
ABSTRACT

AOUADA, DJAMILA. Geometric, Statistical, and Topological Modeling of Intrinsic Data
Manifolds: Application to 3D Shapes. (Under the direction of Professor Hamid Krim).

The increasing size and complexity of data often invokes the extraction of infor-

mation from their reduced representations while preserving their inherent structure. In this

thesis, we explore the statistical, geometric and topological intrinsic information contained

in high dimensional data. We focus on applications related to 3-dimensional objects, and

model their 2-dimensional surfaces using compact curved-skeletal models that we refer to

as “squigraphs”. These models are multi-level representations that superpose global topo-

logical and local geometric 3D shape descriptors. Squigraphs are subsequently used for

classification, and ensure a high discrimination between in-class 3-dimensional shapes.

The extraction of squigraphs starts by sampling the surface of an object for a

resulting set of curves. This may be accomplished by defining an appropriate intrinsic

characteristic function on the surface itself, referred to as a Morse function; which we use

in a two-phase approach. To ensure the invariance of the final representation to isometric

transforms, we choose the Morse function to be an intrinsic global geodesic function. The

first phase is a coarse representation through a reduced topological Reeb graph. We use it for

a meaningful decomposition of shapes into primitives. At the second phase, we add detailed

geometric information by tracking the evolution of Morse function’s level curves along each

primitive. We then embed the manifold corresponding to this evolution of curves into R3,

and obtain a simple space curve. We further define a Riemannian metric to quantitatively

compare the geometry of shapes.

We point the flexibility of our techniques for other applications, namely, face recog-

nition, behavioral modeling, and sensor network data analysis. While all these applications

face the same curse of dimensionality, we show that they may be formalized under similar

geometrical settings.
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Chapter 1

Introduction

The last decade has seen an important growth in applied problems that are tightly

related to the explosive increase in data sizes and complexities. The nature of these appli-

cations calls for a parsimonious representation of the data. The most challenging constraint

associated with this task is the preservation of the inherent data structure in the course of

analysis and modeling.

In this thesis, we explore the statistical, geometric and topological intrinsic information

contained in high dimensional data structures. Our objective is to define simpler models

with significantly reduced complexities, which will subsequently facilitate the usual compu-

tationally demanding applications such as data classification and data retrieval. Reducing

the dimension of a data set is often based on information that is characteristic and restricted

to a small portion of the whole data space to be fully expressed or summarized. Finding

and correctly manipulating the necessary and sufficient features constitute the central goal

of our work.

1.1 Motivations and overview

In the present thesis, we focus on modeling the 2-dimensional surface of a 3D ob-

ject. Our interest in this kind of data is motivated by a variety of applications ranging from

target recognition and face identification to shape retrieval and behavior analysis.

While a number of available 3D shape modeling techniques [1, 2, 3, 4, 5, 6] yield satisfactory

object classification results, many applications require a more refined and efficient identi-
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fication/recognition of objects in a given class. To that end, we invoke Morse theory in a

two-phase approach. To ensure the invariance of a 3D object final representation to isomet-

ric transforms, we choose the Morse function to be a simple and intrinsic global geodesic

function defined on its surface. At first, a coarse representation through a reduced topolog-

ical Reeb graph is obtained. This is in turn used in a meaningful decomposition of shapes

into primitives. Following this step, we add detailed geometric information by tracking the

evolution of Morse function’s level curves along each primitive. We subsequently embed the

manifold corresponding to the evolution of these curves into R3, and obtain a simple space

curve. By combining phases one and two, we construct new graphs rich in topological and

geometric information that we refer to as squigraphs.

Our proposed analysis framework essentially exploits curves in space (which are

representative of 3D objects). As we further elaborate later, spatial curves may indeed

be exploited in various configurations. They may, for instance, be extracted as contours

of landmark surfaces [7], as level curves of a Morse function [8], or also as elements of

curved skeletons [9, 10]. All these techniques, despite their differences, commonly rely

on curves’ properties in solving computer vision problems. This approach is conceptually

motivated by the fact that curves in 3D are fairly well known geometric entities; moreover,

under some conditions, they can accurately describe the overall geometry of an object in

3D space [7]. Translating the constraints of 3D shape representation techniques to curves,

reduces the level of analytical difficulty associated with the 3D representation problem and

makes it more tractable. To this end, we focus our efforts on defining an effective modeling

framework for curves in space along with the corresponding Riemannian metric.

While 3D objects form the core of the applications of interest in this thesis, we also

discuss the exploration of other types of complex data (e.g., video frames, sensor network

data). Our techniques are thus readily adaptable to various applications as long as the

measured data may be correctly assumed to lie on a smooth manifold. Indeed, we show

how our proposed Whitney modeling of curves can be used to represent the evolution of

video frames, where a frame is equated to a segmented silhouette. The evolution of a set of

silhouettes that is ordered in time becomes a 1-dimensional manifold that can be embedded

in 3D.

A less visually intuitive problem is that of analyzing sensor network data. Our goal

is to develop mathematical models which will lead to a clear understanding of the interde-
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pendencies between different nodes within one network, as well as of the interdependencies

between different networks. Such models will be crucial in guiding the implementation of

network infrastructures/protocols which are robust and resilient to intrusions. Our approach

starts by abstracting networks from their physical layered description. We view a network

as a set of features which best characterize it. The same feature space may house multi-

ple distinct networks. Our hypothesis is that each network is characterized by a smooth

topologically homogeneous manifold embedded in the network feature space; therefore, we

propose to carry out our work by relying on notions from topological and geometric mani-

fold learning. The interdependencies between networks may thus be reflected by statistical

correlations between the different space elements (e.g., manifolds and points), where data

points on a manifold are representative of nodes in a network. In addition, an attack or any

intrusion is interpreted as having the effect of destroying the initial topological structure

of a manifold. Our work is hence geared toward detecting and determining any topological

changes.

1.2 Contributions

We summarize our main contributions bellow.

• We have investigated the representation, classification and recognition of 3D objects.

We defined and implemented a complete machinery for a precise identification and

recognition of 3D objects from multiple classes and within one class. In light of the

fact that shapes can be very complex, all our proposed techniques promote the neces-

sity to distinguish between global and local features, or between the coarse and fine

representations. For each of our proposed applications, we first determine the group

of transforms to which the corresponding representations are to be invariant. Our

focus has been on isometries, as they gather rigid and non-rigid shapes and cover a

wide range of applications from biomedical imaging to computer animations. To that

end, we make an extensive use of Morse theory throughout this work. Specifically,

we choose to define a fully intrinsic global geodesic Morse function on the surface

of 3D objects. We exploit the information contained in this function in a two-phase

approach. The first phase is a coarse representation through a reduced topological

Reeb graph, which is instrumental in decomposing a complex shape into primitives.
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In a second phase, the objective is to provide a more fine representation. Taking

advantage of the same Morse function, we proceed to analyze the evolution of its level

curves along each primitive and further reduce its representation to a simple curve

in 3D by using the Whitney embedding theorem. In a very ludic way, we propose to

combine phases one and two to construct “squigraphs” [10]. Experiments show that

squigraphs are more general than existing techniques [11]; they achieve very competi-

tive classification rates in comparison to those achieved by classical shape descriptors.

Their performance, however, becomes clearly superior when finer classification and

identification operations are desired.

• In the same spirit of intrinsic modeling, we introduce a Riemannian metric to compare

curves in space. The classification/recognition of 3D objects by way of squigraphs,

forms the primary motivation of developing a quantitative comparison framework for

space curves. Our additional objective is to limit the invariance of curves’ shapes

to rigid transforms. Inspired by results in visual cognition and human perception,

we propose a technique that simultaneously verifies all the following properties: high

discrimination level, independence of parametrization and independence of any refer-

ence point, uniqueness property, as well as a good preservation of the correspondence

between curves to effectively tackle partial matching problems [12, 13].

• In a different context yet with the same view of geometry-driven analysis, we seek

to understand network data through statistical manifold learning. The key idea in

this problem is to consider data samples as lying on one or more manifolds. From

there, one may start studying the topo-geometric and statistical properties of the data

by calling upon well-established theorems. The main contribution of this work is to

harness space and time information with the correlation between networks’ nodes.

1.3 Outline

The present thesis is organized as follows:

• We cover in Chapter 2 the necessary background to understand the developments

in subsequent chapters. We start by describing the common discrete representation

of 3D objects, i.e., the triangulated meshes; and by providing a brief introduction
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to Morse theory along with a Global Geodesic Function (GGF) as a Morse function

which we repeatedly use throughout this thesis.

• Chapter 3 presents a statistical analysis of the GGF and the new resulting object

classification algorithm. We refer to this algorithm as Classification using object

Characteristic Resolution (CCR).

• Chapter 4 describes the partitioning of 3D objects using their Reeb graphs. The

extraction of Reeb graphs is herein based on level curves of a Morse function instead

of its intervals.

• Chapter 5 defines squigraphs and the Whitney embedding for the geometric modeling

of shapes.

• In Chapter 6, we define a new similarity invariant signature that provides a Rieman-

nian metric for an intrinsic comparison of shapes via their squigraphs.

• Chapter 7 demonstrates, through extensive experiments, the effectiveness of squigraphs

when combined with the distance metric defined in Chapter 6.

• Chapter 8 illustrates the problem of sensor network analysis with the same spirit of

intrinsic modeling.

• We provide conclusions and possible future research directions in Chapter 9.



6

Chapter 2

Background

Research interest in 3D object analysis has witnessed an explosive growth over

the last few years. While this may in part be explained by an equally impressive growth

in computing power, the availability of 3D data acquisition systems and ready access to it

at relatively low cost, have been key in addressing the numerous problems which arise in

applications. Laser scanners, ranging cameras and others have indeed made solutions to

multimedia applications, biometrics, and computer graphics more realistic and affordable.

The wide distribution of 3D data over the internet at no-cost is also testimony to the high

level of interest in the area [14, 15, 16, 17, 18].

In what follows, we describe the discrete representation that is often used to present 3D ob-

jects. We also describe the continuous surface of these objects that we use in our theoretical

formulations.

2.1 Digital and continuous 3D objects

3D objects are commonly represented as polygonal or triangulated meshes. Two

matrices F and V are the usual digital representation of a 3D object, and are often of

prohibitive size. This in turn, unveils the computational challenge often encountered in

practice and particularly in 3D shape classification and recognition applications. A tri-

angulated mesh M is thus denoted by M = (V,F), where V = [v1, ...,vn] is the matrix

of vertices, such that vi contains the Euclidean coordinates of the vertex labeled i, i.e.,

vi = [xi, yi, zi]T and F = [f1, ..., fm] is the matrix of faces, such that fj contains the labels



7

Figure 2.1: Digital and continuous representations of a 3D object.

of all the vertices of the face under the label j, j = 1, · · · , m. We refer to the number n

as the resolution for a digital representation of a 3D object. Mathematically, however, we

view 3D objets as smooth and compact surfaces S embedded in R3. We show in Figure 2.1

an example of a triangulated mesh, and the corresponding continuous surface.

2.2 Morse theory

In order to efficiently represent 3D objects and extract their topological and ge-

ometric features, we make an extensive use of Morse theory [19, 37]. Morse theory states

that it is possible to define a particular smooth function f(·) on a smooth surface S (or

more generally a manifold S), and track its critical points in order to study the topology of

S. Such a function f(·) is called a Morse function and is defined as follows:

Definition 1 (Morse function) A smooth function f : S → R on a smooth manifold S
is called Morse if all of its critical points are non-degenerate.

A standard Morse function is a height function [37, 21, 22]. The image of a point p on

S via the height function is reduced to its z coordinate as shown in Figure 2.2 (b). Any

representation that is based on the height function is clearly varying, as critical points of a
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(a) (b) (c)

Figure 2.2: Illustration of different Morse functions: (a) Initial object. (b) height function
on the surface of a double torus. (c) GGF function on the surface. (Best visualized in color)

surface in R3 will change as a result of its mere rotation. Since shape descriptors are, for

a large number of applications, required to be invariant to similarity transforms1, a choice

of an appropriate Morse function is critical. In [1], Hilaga et al. define a Morse function

for generic metrics on surfaces, that is invariant to isometric transforms. Specifically, this

function is defined at every point v on S as the integral of the geodesic distance d(v,p)

from v to all other points p on S,

f(v) =
∫

p∈S
d(v,p)dS. (2.1)

2.3 Global Geodesic Function GGF

Hilaga et al.’s discrete approximation of Eq. (2.1), that we herein refer to as the

first approximation fappr(·), is defined as follows:

fappr(v) =
∑

i

d(v,bi) · area(bi), (2.2)

where {bi}i=0,1,... is a finitely countable set of base vertices scattered on S and area(bi)

is the area that bi occupies, such that,
∑

i area(bi) ≈ area(S). Also, for an accurate

result, Hilaga et al. emphasize the need for a mesh preparation through two operations:

generation of short-cut edges based on a manually chosen threshold and a subdivision of

the mesh. Let’s consider the object “droplet” of Figure 2.3. and compute its integrated
1Similarity transforms include: translation, rotation, and scaling, or any combination thereof.
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(a) (b) (c) (d)

Figure 2.3: Comparison of the two approximations of the integrated geodesic Morse func-
tion. (a) and (b) are, respectively, the front and bottom views of the distribution of fappr(·)
on the object “droplet”. (c) and (d) are, respectively, the front and bottom views of the
distribution of g(·) on the object “droplet”. (Best visualized in color)

geodesic function. Because of the perfect symmetry of this 3D shape with respect to the

z axis, one should expect the function f(·) defined in Eq. (2.1) to have all its level sets

exactly parallel to the xy plane, i.e., horizontally constant. We find, however, that failure

in achieving an appropriate prepossessing of the mesh, may drastically affect the distribution

of fappr(·), the first approximation of f(·) as defined in Eq. (2.2). In Figure 2.3, we see that

the colors on (a) are not uniform as they should be and are on (c), hence our motivation

in adopting a different approximation of f(·) as our Morse function, all the while keeping

similar attractive properties; This includes its full invariance to isometric transformations,

and a further improvement of the robustness to surface meshing and noise. We hence use

the approximation g(·), that we first defined in [23], and referred to as the Global Geodesic

Function (GGF), such that:

g(v) =
∑

p∈S d(v,p)

maxq∈S

(∑
p∈S d(q,p)

) . (2.3)

Unless specified otherwise, this is the GGF used throughout this thesis, and illustrated in

Figure 2.4, and in Figure 2.2 (c), where the surface S is the previously seen double torus

illustrated in Figure 2.2 (a). In addition to its independence of any reference point, an

important property of this Morse function is its invariance to isometric transformations

(because it is intrinsic), thus yielding a consistent and unique characterization of an object

surface as illustrated in Figure 2.5. The independence of reference points is achieved by the

geodesic integration procedure at each point. The normalization of the functional shown in
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Figure 2.4: Examples of the global
geodesic function on different 3D objects.

Figure 2.5: Invariance to isometric trans-
formations: (A) Original pose and a cor-
responding PDF of its GGF (B) Same
subject after deformation and noise ad-
dition. At the bottom the PDF of its
GGF.

Eq. (2.3) ensures an invariance to scaling by making the range of g(·) coincide with [g0, 1],

with g0 =
minv∈S

P
p∈S d(v,p)

maxv∈S
P

p∈S d(v,p) and g0 > 0. In Figure 2.2 (c), we show the color coding map for

g(·) used on all our objects. In practice, the GGF for each vertex is obtained by computing

the latter’s geodesic distance to all other vertices. This normalization also obviates the

explicit computation of the surface element. This is efficiently realized with the well known

Dijkstra algorithm whose complexity is O(N2 log N) [24].
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Chapter 3

Statistical Analysis

In this Chapter, we present an economical and fast classification algorithm for 3D

objects. Classifying 3D shapes independently of any rotation, translation, scaling transfor-

mation and/or non-elastic deformation is of great importance in many applications includ-

ing multimedia, communications, computer graphics and biometrics. While many successful

methods exist, they are of relatively high complexity for the task of putting objects into

groups. We propose a classification strategy that is far less complex and still very robust

to pose and articulation changes. Our method is based on the GGF defined in Section 2.3.

Each object class is defined by only four parameters obtained during a learning stage. We

use these parameters in the decision of a class membership. Experimental results demon-

strate low cost, efficiency, and robustness to resolution and data benchmarks of the proposed

approach.

3.1 Introduction

We propose to define a 3D object classification technique where we characterize

each class with four parameters obtained from the global geodesic shape function. The

first three parameters consist of a variability measure and two characteristic resolutions.

The characteristic resolutions indicate how to maximally and effectively reduce the overall

computational complexity with little or no loss of information about a given object. These

parameters are generally class specific and may, hence, be used as a first order classifier. A

refined level of discrimination is achieved by introducing a threshold measure as a fourth
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(a) (b) (c) (d) (e) (f)

Figure 3.1: Illustration of the visual effect of the resolution reduction on the GGF of a 3D
object. Resolution is decreasing from case (a) to (f). An abrupt change in the GGF occurs
at (d).

parameter. To further improve on the discrimination power of these parameters, we propose

a subsequent zooming comparison procedure to focus on distinctive features among objects,

and, hence, provide a potential for recognition1. The remainder of this chapter is organized

as follows. The next section gives the formulation of the problem along with a presentation

of the key tools that are used. The detailed algorithm is explained in Section 3.3. The sub-

steps are illustrated as well. In Section 3.4, experimental results that aimed to demonstrate

the robustness and the efficiency of the method are given. Finally, Section 3.5 summarizes

the present Chapter, and proposes future projects as a continuity to the present statistical

analysis.

3.2 Problem formulation

Given a set of N classes of objects {C1, C2, . . . , CN}, our goal is to decide on a

class membership of an object O. To efficiently carry through such a task, we define a set

of feature parameters for an object and to construct a systematic procedure for 2D surface

comparison.

3.2.1 Resolution evaluation

As stated earlier, the computational complexity is a predominant factor in 3D

object processing. We have experimentally also established that a uniform subdivision of
1Recognition here means a more refined level of classification
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Figure 3.2: Resolution evaluation for a dog from Princeton’s benchmark.

a mesh preserves a near invariance of a histogram of the GGF, for different resolutions

of an object relative to that of its finest resolution. A sharp and sudden change in the

overall distribution of the GGF as illustrated in Figure 3.1, takes place and the visual

perception is perturbed when the resolution is too low to exhibit the desired invariance of

the distribution. The reference distribution of any 3D object in a class of interest is that

of its GGF computed at the finest resolution. This distribution is subsequently compared

to those obtained by progressively decreasing resolutions. To this end, we use the Jensen-

Shannon Divergence (JSD) as a distance function between two distributions [3, 25]. For

K different resolutions, R0 > R1 > . . . > RK−1, of an object and their K corresponding

PDFs PRi , i = 0, 1, . . . ,K − 1, the JSD distance is defined as follows

JSD(PR1 , PR2) = H(
∑

l=1,2

1
2
PRl)−

∑

l=1,2

1
2
H(PRl), (3.1)
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where H is the Jensen-Shannon entropy defined by:

H
(
PRi

)
= −

l=L∑

l=1

PRi(l) log PRi(l), (3.2)

with L < Ri and PRi(l), l = 1, 2, . . . , L, being the elements of the discrete PDF vector PRi .

Equivalently, we may write

2 · JSD(PRi , PRj ) = 2H(
1
2
PR1 +

1
2
PR2)−H

(
PR1

)
−H(PR2

)
. (3.3)

With the knowledge that all 3D objects will manifest a trend similar to that illustrated in

Figure 3.1, we proceed to determine the smallest (characteristic) resolution " of any given

object O. This resolution " will also have a distribution of its geodesic function sufficiently

close to that of the finest resolution. For a systematic comparison of the PDFs at various

resolutions, we first define

X(Ri) = (JSD(PR0 , PRi), JSD(PR0 , PRi+1)), i = 1, 2, . . . ,K − 1. (3.4)

We subsequently proceed to define the characteristic resolution " as

" = argmax
(
variance (X(Ri))

)
, i = 1, 2, . . . ,K − 1. (3.5)

Note that this resolution evaluation is carried out during the learning step in order to

alleviate the online computational burden. To reduce the computational load during testing,

we try to avoid, if at all possible, calling upon the first resolution representation, and

use instead the characteristic resolution as the reference. To that end, the characteristic

resolution " and its two neighbors along with the corresponding JSD distances represent

the reference as detailed in Figure 3.2.

3.3 Proposed algorithm

With the tools described in Section 3.2 in hand, we propose a classification strategy

that heavily relies on a training procedure during which a class parametrization is achieved

in order to yield as a result, an object class membership. This result is based on an

elimination principle which takes advantage of the designed parametrization. To further

refine discrimination among objects, we introduce a post processing zoom-in procedure on

PDF’s comparison and to focus on more detailed dissimilarities among objects.
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3.3.1 Class resolutions

As noted in Section 3.2.1, we evaluate a characteristic resolution "(i) as defined

in Eq. (3.5) for each training object Oi, i ∈ Ω = {1, 2, . . . ,M}, from a class C. For various

objects of a class, we obtain a class characteristic resolution as being the maximum of all

the characteristic resolutions within that class,

"C
r = max

i=1,...,M
{"(i)}. (3.6)

To ensure generalizability to all training samples, we define a second discrimination pa-

rameter as being the transition resolution or the minimum right neighbor, i.e., the right

neighbor of the minimal characteristic resolution, referred to as "C
t . Recall that the mea-

sure of variance of JSD at "C
r and "C

t , provides the third parameter; thus, we end up with

three parameters.

3.3.2 Thresholding

Upon establishing "C
r , any comparison within a class is carried out at "C

r by

computing a pairwise JSD among all training objects in C. The highest distance obtained

from the latest JSDs is the sup distance that no object within a class C would never

exceed.The threshold τ is hence defined as

τ = max
i,j∈Ω

{JSD(P (i), P (j))}, (3.7)

where P (i), i ∈ Ω, is the lenient notation for P (i)
#C

r
; the PDF of the GGF associated to the

object Oi from the class C and computed at the class characteristic resolution "C
r .

When the order of "Cr is important (> 1000), the computed PDF of the GGF is dependent

of the sampling rate, i.e., the number of bins used to compute the histogram of the GGF.

Then, the threshold τ , which was a scalar in Eq. (3.7), becomes a vector whose elements

are thresholds computed at different sampling rates.

3.3.3 Zoom-in operation

To detect dissimilarities between two objects Oj and Ok, with j '= k, the corre-

sponding PDFs are compared over smaller regions of their support, which we focus on by

a zoom-in operation. To that end, denote by L the maximal support of the PDFs of the
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GGFs for the two objects. We proceed by looking at fixed intervals Li, with Li < L, over

which we determine normalized PDFs P (j)(Li) and P (k)(Li) for Oj and Ok respectively.

The JSD between the two objects is now a function of the interval Li and is defined as

f (Li) = JSD(P (j)(Li), P (k)(Li)). (3.8)

Establishing a critical region over which two PDFs are most similar, namely,

L0 = argmin (f(Li)) . (3.9)

Our interval of interest is redefined as

λ = L− L0. (3.10)

The interval λ contains hence the largest diversity between Oj and Ok. A reasonable

dissimilarity measure Dλ
2 is the ratio between the area on the object, either Oj or Ok,

corresponding to λ and the total area of the same object S(j) or S(k) respectively. Recall

that λ ∈ {[a, b] | 0 < a ≤ b ≤ 1}, and define, for Oj , for instance,

S(j)(λ) =
{∑

l

δSl | g(pl) ∈ λ
}

. (3.11)

Note that

S(j) = S(j)(]0, 1]); (3.12)

therefore, Dλ is defined as

Dλ(Oj , Ok) =
1
2

(S(j)(λ)
S(j)

+
S(k)(λ)
S(k)

)
. (3.13)

In a more particular formulation of the problem, the zoom-in operation introduces a new

distance measure DC
λ between an object Oj and a class C by taking the second object Ok

as the best representative of the class C in the sense of the nearest neighbor relatively to

Oj and where JSD is the considered distance. Hence, we set Ok = OC , where OC is the

object from class C of index l ∈ Ω that corresponds to minl∈Ω
j /∈Ω

{JSD(P (j), P (l))}. It follows

that

DC
λ (Oj) = Dλ(Oj , O

C). (3.14)

The two measures Dλ and DC
λ are dependent of the fixed length of the interval Li, i.e,

dependent of the length of λ. Indeed, the smaller the length of λ is, the more emphasis is

put into details.
2The subscript λ indicates that the measure is achieved for the fixed interval length of λ.
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3.3.4 Algorithm

The distinct steps of the algorithm are sketched in Figure 3.4., and summarized

next.

1. Define N object classes {C1, C2, . . . , CN}.

2. In the learning phase, associate to each class Ci a corresponding "Ci
r , "Ci

t , the class

characteristic variance σ2
Ci

and the threshold τCi .

3. Sort all classes in an increasing resolution order "Ci
r .

4. Construct super-classes by merging classes sharing the same parameters "Ci
r , "Ci

t and

σ2
Ci

.

5. Start from the lowest resolution "C1r and set l = 1.

6. Compute the GGF of O at "Clr and get its resolution parameters.

7. Compare the resolution parameters of O with those of Cl. If similarity is established,

i.e., decision is 1;

• Termination of search if Cl is a class.

(a) (b) (c)

Figure 3.3: Detection of the area of dissimilarity between two airplanes using the GGF:
Zoom-in operation.
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Figure 3.4: Algorithm of the discrete classification decision for 3D objects. Resolutions
"Cir are simply denoted "Ci in order not to overload the figure.
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• Apply thresholding if Cl is a super-class.

Otherwise the decision is 0 and l = l + 1.

8. Go to 6.

9. Repeat operations until a decision 1 is reached.

3.4 Experimental results

3.4.1 Independence of sources of data

Figure 3.5: Illustration of the characteristic resolution extraction (Best visualized in color).

An important characteristic of classification algorithm is its consistent performance
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Table 3.1: Characterization parameters for the class of felines.
Parametrization from learning Parametrization from testing Absolute error

"r 1942 1897 2.32 %
"t 1501 1420 5.40%
σ2 418000 386000 7.66%

independently of what data-base or measurement system the data originates from. So as

long as the format is in readable form, we have shown that our proposed approach enjoys

such a property. We made extensive use of Princeton’s benchmark [16] for all our learning

and testing. We have subsequently tested data from INRIA’s benchmark to validate our

claim. Decision tolerance is set to 10% as a maximum absolute error on each parameter.

The corresponding overall recognition performance, i.e., number of correct decisions overall

the testing experiments, is 93.88%. To verify and illustrate the importance of the invariance

properties provided by the GGF, we applied isometric transforms (rigid and non rigid) to

the same dataset. The results of this new experiment show a classification performance

of 97%. The parameters obtained for the class of felines, where a good representative is

shown in Figure 3.1., are gathered in the following Table 3.1: We show, in Figure 3.5,

additional examples of detecting the characteristic resolution for different classes of 3D

models. We provide the comparison of PDFs with the JSD in the rightmost column. We,

again, confirm this trend in the progression of the distribution of the GGF; indeed, for the

same color mapping of the GGF on the surface of shapes, we clearly see a sudden change in

the coloration of the model. This abrupt transition, corresponds each time to going below

the characteristic resolution of a model/class.

3.4.2 Threshold implementation

Recall the thresholding procedure is introduced as a complementary and refined

discrimination measure between two or more classes. For two closely related classes (e.g.

pigs and dogs) for example, a resolution-based comparison fails while the threshold-enhanced

immediately eliminates the confusion. In Figure 3.6., the “pig” object is eliminated from the

class of dogs because the maximum pairwise comparison of its GGF distribution exceeds,

over a region, the threshold previously computed for the class of dogs.
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Figure 3.6: Illustration of the classification level: Thresholding.

3.4.3 Zoom-in example

The GGF is sufficiently powerful to detect and measure dissimilarities even for

relatively close 3D objects. In Figure 3.3., at λ = 1/10, we look at the area of highest

difference between two airplanes. In (a), a commercial airplane is represented. In (b), a

more recent model of commercial airplane is shown. The zoom-in technique highlights in (c)

(in white) the λ-surface of difference. This difference restricted to the fuselage, is intuitively

pleasing as it confirms our visual interpretation of a fatter first airplane.

3.5 Conclusion

In this Chapter, we presented a new 3D object classification strategy based on four

parameters. We have shown that it generally provides a quick discrete decision on object

comparison; indeed, once the learning stage completed, the classification becomes a simple

comparison of numbers with a given tolerance. The technique is based on the distribution

of the GGF which, in turn, provides very interesting properties such as its invariance to
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all isometric transformations; moreover, a new and precise dissimilarity measure has been

introduced. More work is currently directed on the exploration of the theoretical bases of

the characteristic resolution and its relation to topological changes of surfaces.
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Chapter 4

3D Shape Partitioning

To simplify the matching and recognition of 3D objects, we propose to decompose

a complex 3D shape into simpler primitive parts. Our proposed partitioning of objects relies

on their topological Reeb graphs. Taking advantage of the properties of Morse theory, we

detect the critical points of the GGF. These points define the levels at which the segmen-

tation happens. To preserve the geometry of objects, we choose to use level curves instead

of intervals. To proceed with object matching, we propose a kernel-based technique to

register Reeb graphs. This optimal positioning of two Reeb graphs prepares for a pairwise

comparison of the geometry of their primitives.

4.1 Introduction

It is widely believed that perception utilizes crucial topological characteristics of

objects. Recent neuro-imaging studies, together with behavioral studies, provide strong

evidence supporting the notion that topological properties (such as a genus, or connected-

ness) are primitives of visual representation in humans. To address the potentially complex

topology of a 3D object (e.g., holes, breaks in objects), we call upon Morse theory [19]

to develop a robust and systematic technique which unfolds the topology of an object, by

studying the critical points, i.e., maximum, minimum or saddle points, of a Morse function

defined on its surface [22]; the GGF in our case (Section 2.3). These critical points along

with the regular points, fully capture the topology of a 3D object by a graph, referred to as

a Reeb graph. Graph theory has enjoyed a wide popularity in problems of classification and



24

recognition [26]. Reeb graphs have thus proven to be instrumental in globally describing

three-dimensional shapes and in representing their topology [37]. Specifically, the nodes

on such graphs represent critical points of a Morse function defined on a 3D shape/object

surface, while the edges capture the topologically homogeneous parts, which correspond to

“primitive” shapes.

Comparing topological graphs/skeletons for the purpose of matching objects has

been extensively studied. Our interest is, however, to explore these graphs for more refined

comparisons. We thus propose to use the Reeb graph of an object to decompose it into

simple shapes or primitives. Comparing the geometry of these shapes will therefore become

an easier task as long as we ensure a good correspondence between the primitives of two

objects to compare.

The remainder of this Chapter is organized as follows: We describe, in Section 4.2,

our original technique for the extraction of Reeb graphs using level curves of the GGF.

In Section 4.2.2, we present our partitioning technique, and propose, in Section 4.3, a

framework for object comparison based on matching their graphical representation and

the comparison of their primitives. Finally, in Section 4.4, we illustrate the results of our

proposed technique.

4.2 Extraction of Reeb graphs

(a) (b) (c) (d)

Figure 4.1: Illustration of Reeb graph extraction: (a) Initial object. (b) GGF function on
the surface. (c) Iso-geodesic curves. (d) Extracted topological Reeb graph. (Best visualized
in color)
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With the GGF g(·) in hand (Section 2.3), we construct a topological Reeb graph

for an object surface S [1, 2]. Mathematically, a Reeb graph is a quotient space S/∼, where

the equivalence relation is given by p ∼ q if and only if g(p) = g(q) with p and q being

two points on S and belonging to the same connected component of g−1(g(p)). Practically,

we sample the surface S of a 3D object by way of level sets of a Morse function, and in our

case thereof a GGF g(·). As illustrated in Figure 4.1 (c), the level sets of g(·) are closed

curves, which we refer to as iso-geodesic curves. We present the resulting Reeb graph in

Figure 4.1 (d), where each closed iso-geodesic curve is replaced by a node colored in black.

4.2.1 Level set characterization of a surface

Generically, we can reconstruct a 2-dimensional surface S from the set of 1-

dimensional iso-curves of the GGF. A surface S is then a disjoint union of all iso-geodesic

sets A(t) for t ∈ [g0, 1] ⊂ R+, where A(t) = {v ∈ S | g(v) = t}, and g0 is the minimal value

of g(·).

S =
t=1⋃

t=g0

A(t), and A(t1) ∩ A(t2) = ∅ if t1 '= t2. (4.1)

For smooth and compact objects, an iso-geodesic set is the union of closed curves (i.e., iso-

geodesic curves). The number of these distinct curves at the same geodesic level is the

cardinality Car(t) of the corresponding iso-geodesic set A(t). In practice and on triangu-

lated meshes, the extraction of an iso-geodesic set for a given level, say λ, entails first finding

all the faces that cover this set of curves. Each iso-geodesic curve is included in a connected

set of covering faces so that the resulting curve is ensured to be closed. A covering face

whose vertices are v1,v2 and v3 with g(v1) < g(v2) < g(v3) falls under one of the following

properties:

1. λ ∈ [g(v1), g(v2)]

or

2. λ ∈ [g(v2), g(v3)]

Two points p and q belonging to the approximated iso-geodesic set A(λ) are defined on

two edges of the covering face (Figure 4.2). If Property 1 is verified, then:

−−→v1p =
λ− g(v1)

g(v2)− g(v1)
· −−→v1v2,



26

v
1
 

v
2
 

 p 

q 

v
3
 

v
1
 

v
2
 

v
3
 

p 

q 

λ ∈ [g(v1), g(v2)] λ ∈ [g(v2), g(v3)]

Figure 4.2: Covering face and iso-geodesic curve interpolation.

and
−−→v1q =

λ− g(v1)
g(v3)− g(v1)

· −−→v1v3.

If instead Property 2 is verified, then:

−−→v3p =
g(v3)− λ

g(v3)− g(v2)
· −−→v3v2,

and
−−→v3q =

g(v3)− λ

g(v3)− g(v1)
· −−→v3v1.

Once we obtain all the possible couples (p,q), we smoothly interpolate, with a B-spline

for instance, the so obtained sample of points to get the iso-geodesic curve at the level λ

of the GGF; moreover, the subsurface supported by one edge has exactly one iso-geodesic

curve for every value between a and b; the extremal values of the GGF along the edge. We

call such subsurface M a mono-cardinality subsurface. We may view M as follows:

M =
⋃

t∈[a,b]

C(t), with g0 ≤ a < b ≤ 1,

and C(t1) ∩ C(t2) = ∅ if t1 '= t2, (4.2)

where C(t) is just one iso-geodesic curve at the level t of the GGF. In the example of
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Figure 4.3: Illustration of topological change of iso-geodesic curves. The point p is the
bifurcation point at which this change occurs.

Figure 4.3, the illustrated iso-geodesic sets correspond (from top to bottom) to the values

0.8, 0.85 and 0.9 of the GGF, respectively. The corresponding cardinalities are Car(0.80) =

Car(0.85) = 1, and Car(0.90) = 2, i.e., the first two sets consist of one closed curve, whereas

the third set includes two distinct closed curves.

Tracking the cardinalities of iso-geodesic sets helps us in constructing an associated

Reeb graph. The continuous and smooth evolution of the iso-geodesic curves on a surface

captures its topological and geometrical description. Any change in the topology of the iso-

geodesic sets, i.e., any smooth change in their cardinalities, hence, determines a bifurcation

point as shown in Figure 4.3. This transition is translated on the object’s topological graph

by a node of order η > 2 that introduces η edges. We preserve all such nodes and those

corresponding to critical points of the GGF along with their edges to only capture the

important topological information. The resulting special skeleton, that we refer to as a

reduced 3D Reeb graph, offers a nice structure on which the geometry of an object may

easily be superposed. Thus, the geometric modeling of a complex shape is now reduced to

separately modeling a partial shape along each edge of the reduced Reeb graph. We next

discuss the details of modeling the geometric shape along an edge.
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During the graph extraction operation, we replace each iso-geodesic curve Ci by

one node Ni which is the arithmetic mean of the curve; hence, we end up with a point cloud

in 3 dimensions. In order to systematically get a final topological representation of the 3D

object, we define a canonical relationship ( between every two nodes Ni and Nj such that:

Ni ( Nj =





1 if Ni and Nj are connected,

0 , otherwise.

To that end, we give the following postulates:

• Two nodes representing the same iso-geodesic level are disconnected. We write:

i = j =⇒ Ni ( Nj = 0. (4.2)

• Two nodes separated by nodes at intermediate levels are disconnected, i.e.,

j '= i± l =⇒ Ni ( Nj = 0, (4.2)

where l is the sampling step.

Based on these postulates, we constrain our search on nodes representing two different but

consecutive iso-geodesic levels.

Theorem 1 (Path connectivity) Nodes representing two consecutive iso-geodesic curves

are linked (connected) if and only if there exists a continuous path joining the two curves

and lying on the section limited by the same iso-geodesic curves.

4.2.2 Graph connectivity

To partition a 3D object we need to first accurately connect all the nodes Ni. To

that end, we start by defining orthogonal curves.

Definition 2 (Orthogonal curves) An orthogonal curve on a surface S passing through

a point p is the curve of minimal length linking the iso-geodesic curve containing p to

another iso-geodesic curve.

We note that the vector field generated by the gradient of the GGF gives integral curves

orthogonal to the iso-geodesic curves. So, by definition, an orthogonal curve takes a point p
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on a surface S and geodesically projects it on another iso-geodesic curve. By considering an

infinitesimal patch around a point p from S, we approximate the patch by a disk on which

the iso-geodesic curve C becomes a segment passing through p. This segment represents

the direction of zero variation of the GGF. We find that the projection of p on the next

iso-geodesic segment C ′ follows the perpendicular to C on p. Under the assumption that all

points are uniformly distributed on the surface and since the iso-geodesic curve represents

the direction of zero variation of the GGF, we conclude, by duality, that the orthogonal

projection of p is equivalent to finding the direction e of highest variation of the GGF; hence,

we construct an orthogonal curve by progressively tracking, at a point level, the direction

of the highest variation of the GGF. We determine the direction e that maximizes the

directional derivative of g at a point p; thus, we extract an orthogonal curve by progressively

estimating a new direction ê starting at each new iso-geodesic level1. We may write,

ê = arg max
(
Dg · e(p)

)

= arg max(lim
t→0

g(p + te)− g(p)
t

). (4.3)

Starting from a point with the lowest value of the GGF, and by progressively finding ê,

we construct an orthogonal curve with respect to iso-geodesic curves. By construction,

iso-geodesic curves are transversal to an orthogonal curve. The orthogonal curve is the

continuous path that we were after in Section 4.2. Its existence between two consecutive

GGF levels implies the existence of an edge connecting the nodes representing these levels.

The subsurface supported by one edge has exactly one iso-geodesic curve for every

value between a and b; the extremal values of the GGF along the edge. We call such

subsurface M a mono-cardinality subsurface. We may view M as follows:

M =
⋃

t∈[a,b]

C(t), with g0 ≤ a < b ≤ 1,

and C(t1) ∩ C(t2) = ∅ if t1 '= t2, (4.4)

where C(t) is just one iso-geodesic curve at the level t of the GGF. In the example of

Figure 4.3, the illustrated iso-geodesic sets correspond (from top to bottom) to the values

0.8, 0.85 and 0.9 of the GGF, respectively. The corresponding cardinalities are Car(0.80) =
1We note that we only need a starting point to extract an orthogonal curve.
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Figure 4.4: Orthogonal curve extraction using infinitesimal patches around each point at
increasing values of the GGF.

Car(0.85) = 1, and Car(0.90) = 2, i.e., the first two sets consist of one closed curve, whereas

the third set includes two distinct closed curves.

Tracking the cardinalities of iso-geodesic sets helps us in constructing an associated

Reeb graph. The continuous and smooth evolution of the iso-geodesic curves on a surface

captures its topological and geometrical description. Any change in the topology of the iso-

geodesic sets, i.e., any smooth change in their cardinalities, hence, determines a bifurcation

point as shown in Figure 4.3. This transition is translated on the object’s topological graph

by a node of order η > 2 that introduces η edges. We preserve all such nodes and those

corresponding to critical points of the GGF along with their edges to only capture the

important topological information. The resulting special skeleton, that we refer to as a

reduced 3D Reeb graph, is the main support for a meaningful segmentation of a 3D object.

Indeed, the only remaining task is to cluster all the points on the surface S that are delimited

by two iso-geodesic curves represented by two connected nodes from the reduced graph.
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4.2.3 Efficient sampling

A very redundant and important problem that is stressed when building Reeb

graphs is how to solve this blind setting and define the effective sampling rate K that

ensures the extraction of, and only of, the information needed to represent and reconstruct

a given shape [1, 28]. The sampling rate K is usually empirically chosen, and the resulting

sampling step is:

l =
maxv∈S (g(v))−minv∈S (g(v))

K
. (4.5)

The use of curvature as a criterion is certainly the first thing that comes to one’s mind.

Indeed, if we think of planar shapes, we know that more points (vertices) are needed to

represent high curvatures in opposition to straight line segments whose curvature is zero

and for which the two extremal points are sufficient to represent and reconstruct the full

shape. Our intuition may further suggest to take the highest curvature on the curve/surface

to be the criterion. This would be the solution if the highest curvature happened to be a

dominant feature on the whole shape. In many cases, this is not true. Instead of basing our

choice on a local property, we therefore rely on the global perception of shapes’ curvatures.

The characteristic resolution ", defined in Eq. (3.3), is a feature that is directly

related to the curvature of a shape. As we reduce ", we act on the original shape by

smoothing it. This machinery is nothing but choosing a tolerance τ . “Tolerance” is the

common name given for the maximal edge length between adjacent points on a surface

S. In fact, the raw data is reduced to its characteristic resolution " and every vertex

becomes now of importance to obtain an accurate representation for S. We recall that any

topological transformation that happens on S and that we are to detect is translated on its

one dimensional Morse function g(·); hence, we base the sampling rule of a 3D object on the

sampling of g(·) or of a functional of g(·). We view g(·) as a continuous random variable,

or practically as a discrete random variable X (g ≡ X), s.t., X : V → R is defined on the

probability space (V,A, P#), where V is the set of " vertices on the triangle mesh (V,F)

approximating the surface S (Section 2.1). A is a σ −Algebra composed of all the subsets

of V. Note that we interchangeably use V as the set or the matrix of vertices.

Similarly to Eq. (4.5), we apply the sampling along the axis of variation of X.

In order to achieve an efficient sampling step l, we need to define the largest step l that

will cause no breakdowns on the mesh (V,F). Let γ1 = g−1 (g(p)) and γ2 = g−1 (g(q))
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be two distinct and consecutive connected components (i.e., two consecutive iso-geodesic

curves). With a resolution " and a tolerance τ associated to it, the longest acceptable

orthogonal geodesic distance between γ1 and γ2 is equal to τ . The remaining question is to

find l = |g(p)− g(q)| = |λ1 − λ2|. If p and q are connected then d (p,q) = τ , and we have

for v ∈ V:

d(p,v) > d(p,v) =⇒ d(p,v) = d(q,v) + τ, (4.6)

Similarly,

d(p,v) < d(p,v) =⇒ d(q,v) = d(p,v) + τ ; (4.7)

Therefore, if there are n elements from V verifying (4.6), then we find:

λ1 − λ2 =
("− 2(n− 1))

maxv∈V
∑

w∈V d (v,w)
· τ. (4.8)

We may also define an upper bound for l, independent of the variable n and equal to
(#−2)

maxv∈V
P

w∈V d(v,w) · τ .

4.3 Reeb graph matching

Reeb graphs being topological descriptors, we require the connectivity information

to define a distance between them. We actually use reduced Reeb graphs where the node

order is never 2. We herein define a distance measure that is in the same spirit as the

edit-distance for shape matching as defined in [4]. We compute in (4.9) the similarity score

S(·, ·) between two reduced Reeb graphs Γ1 and Γ2 with N1 and N2 nodes, respectively, and

N1 ! N2. We denote by {vi}N1
i=1 the nodes of Γ1, and {wi}N2

i=1 the nodes of Γ2. We define

the similarity between these two graphs as follows:

S(Γ1,Γ2) =
2πσ

N1

N1∑

i=1

max
j=1,··· ,N2

{
β
(
vi,wj

)
δ(Γ1)
i (wj)

}
, (4.9)

with

δ(Γ1)
i (wj) =





1 iff |ηvi − ηwj | ! 2;

0 otherwise,

and

β(vi,wj) =
1

2πσ
exp

(
− |g(vi)− g(wj)|

2σ2

)
, (4.10)
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where σ is a strictly positive constant of our choosing and ηvi and ηwj are the orders of

nodes vi and wj , respectively. The function δ(Γk)
i (·) plays the role of a registration operator

based on the order of graph nodes. We also choose a kernel function β(·, ·) that is strictly

decreasing, hence the choice of the Gaussian kernel in Eq. (4.10). The intuition behind

choosing the factor β is the assignment of a high similarity weight to registered nodes if

they correspond to GGF levels that are close.

4.4 Illustration

In order to illustrate the proposed shape partitioning technique, we use the four

objects in Figure 4.5 (a) [15]. We start by computing the GGF corresponding to each one

of these shapes and extract the corresponding topological Reeb graphs (Figure 4.5 (b)). In

Figure 4.5 (c), we present the segmented objects. These have the same colors for primitives

that we matched using Eq.(4.9).

4.5 Conclusion

We proposed a technique for an automatic partitioning of 3D objects into prim-

itives along with a distance to ensure a good correspondence between them. The next

Chapter shows how this segmentation may be used to simplify recognition problems and

for partial matching of shapes.
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(a)

(b)

(c)

Figure 4.5: Overview of the partitioning technique (Best visualized in color).
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Chapter 5

Squigraphs for Geometric

Modeling

We propose to superpose global topological and local geometric 3D shape descrip-

tors in order to define one compact and discriminative representation for a 3D object. While

a number of available 3D shape modeling techniques yield satisfactory object classification

rates, there is still a need for a refined and efficient identification/recognition of objects

among the same class. In this Chapter, we add detailed geometric information to Reeb

graphs, by tracking the evolution of Morse function’s level curves along each primitive re-

sulting from partitioning complex shapes. We then embed the manifold of these curves into

R3, and obtain a single curve. We thus build new graphs rich in topological and geometric

information that we refer to as squigraphs. Our experiments show that squigraphs are more

general than existing techniques. They achieve similar classification rates to those achieved

by classical shape descriptors. Their performance, however, becomes clearly superior when

finer classification and identification operations are targeted. Indeed, while other techniques

see their performances dropping, squigraphs maintain a performance rate of the order of

97%.

5.1 Introduction

Numerous 3D representation approaches have recently been proposed, as overviewed

in [29] and [30]. In the present work, we propose a 3D object representation model that
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offers different levels of discrimination. This model invokes an object’s geometric and topo-

logical information. This rather recent technique, henceforth referred to as topo-geometric

modeling of 3D objects, was first exploited in [31], where Meng Yu et al. simultaneously

define topological and geometrical feature maps. They show that these feature maps are

invariant to all affine transforms. This invariance includes, by definition, non uniform scal-

ing transforms. This, in turn, implies an inaccurate dissimilarity measure between the

geometry of shapes, as the geometry of shapes is only invariant to Euclidean transforms.

Tung and Schmitt [2] and Baloch et al. [28] present a different theme by first representing

the topology of a 3D shape, and subsequently enhancing it with its geometrical represen-

tation. The advantage of separating the modeling into two distinct steps is twofold: First

it provides two levels of discrimination; a) a coarse level with a simple topological skele-

ton called a Reeb graph [22, 32] (Section 4.2), and b) a fine level with geometric weights

assigned to each edge or node of the previously extracted topological graph. Another ad-

vantage of a topological graph representation of an object is its ability of matching objects

by parts, thereby enabling a transition from a global to a localized correspondence between

shapes (e.g., mechanical parts, manufactured solids). In representing an object, one ideally

avoids choosing a reference point extrinsic to its surface [1, 33, 34, 35, 36]. To that end,

we address this limitation, evident in [28, 31], by adopting an integrated geodesic distance

function as defined in [1]. Such a function ensures the invariance of the Reeb graph of an

object subjected to any isometric transform. As first proposed in [1], this function was lim-

ited to only providing topological information of an object surface. Tung and Schmitt [2],

in an attempt to mitigate this limitation, proposed to revert back to a Euclidean reference

frame to compute differential geometric features which they use as weight attributes on the

Reeb graph.

In this Chapter, we propose a novel alternative technique that is efficient, theoretically

sound, practically complete, and computationally simple. Our proposed approach is rooted

in modeling the geometry along edges of the object representative graph. We subsequently

define a new topo-geometric skeleton that we call squigraph. The key idea for the geometric

modeling of shapes is to embed in Euclidean space a manifold of new characteristic curves

(we refer to as iso-geodesic curves) of an object surface. The resulting embedding space, as

we show below, is R3, and the curve manifold is 1-dimensional, i.e., a space curve in R3.

As a result, all topological and geometric information we exploit remains intrinsic to the
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modeled object, hence preserving all desired invariance properties alluded to earlier.

5.2 Representation of a surface geometry

We note that, just as in [2, 28], our 3D object modeling approach starts with a

topological analysis followed by a geometrical analysis step. In our present work, however,

we strive to achieve a topo-geometric representation that is both discriminative and effi-

cient. This is why we proceed by economically exploiting, for the geometric modeling, the

same entities used earlier for the topological modeling with Reeb graphs. The entities in

question are the level sets of the GGF, i.e., the iso-geodesic sets defined on the surface of

an object. Using iso-geodesic sets allows us to further extend the invariance properties of

the GGF to the geometric phase.

In addition, unlike the usual global shape descriptors, a more complete geometric repre-

sentation is one which provides a local description taking into account the spatial location

of points or vertices [31]. The iso-geodesic curves used in the topological representation

consequently appear, once again, to be able to offer perfect local geometric descriptors. We

therefore take advantage of these already extracted entities, and use them for the second

phase of our modeling as described in what follows.

Broadly, our strategy is as follows: once we extract iso-levels of the GGF, we ob-

tain a set of closed curves (namely the iso-geodesic curves) along each edge of a topological

graph of an object. We use these characteristic curves to define a geometric model. We

subsequently assign the models to the corresponding edges. We in turn exploit these geo-

metric models to further compare every two edges that have been matched as part of two

topologically similar graphs. In Figure 4.5 (c), we show all matched edges in the same color.

We compactly represent the final topo-geometric model through a new spatial graph that

we call squigraph (Figure 5.2 (d)). A squigraph graph differs from a classical Reeb graph by

its “squiggling” curves that replace the standard straight edges and encode the geometric

information about the shapes.
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5.3 Whitney theorem for modeling

It is important to note that a geometric shape along an edge corresponds to what

we described, in Section 4.2.1, as a mono-cardinality subsurface. So all the partial shapes

along Reeb graph edges are simply equivalent to generalized cylinders. In fact, this philos-

ophy of decomposing a complex shape into a set of cylinders goes back to the very early

work on tubular representation of 3D shapes.

Equation (4.4) shows that a mono-cardinality subsurface M is formed by the disjoint union

of an infinite number of iso-geodesic curves C(t), monotonically and continuously parameter-

ized by t ∈ [a, b] ⊂ R+, where [a, b] is the range of the GGF restricted to M (Figure 5.1 (a)).

It therefore naturally follows that M is a smooth path in high dimensional space whose

point elements are the iso-geodesic curves C(t), t ∈ [a, b]; hence, M constitutes a smooth

1-dimensional manifold on the topological space of closed iso-geodesic curves on which the

restriction of the GGF is a homeomorphism (Figure 5.1 (c)). In what follows, we inter-

changeably use M to refer to the mono-cardinality subsurface embedded in R3, as well as

to the corresponding curve embedded in the higher dimensional space.

Getting back to our objective of simply modeling each mono-cardinality subsurface

M, we first invoke the Whitney embedding theorem as stated below,

Theorem 2 (Whitney embedding theorem) [38] Let γ be an n-dimensional compact

Hausdorff Cr manifold, 2 ≤ r ≤ ∞. Then, there is a Cr embedding of γ in R2n+1.

In the present problem, the manifold γ is nothing but M, for which the dimension n is

equal to one; hence, the stated theorem asserts the existence of an embedding of M in R3.

In fact, such embeddings have full measure in the set of maps or even projections into R3,

so we can assume that a random projection works. Thus we can safely use this embedding

for our geometric modeling since, by definition, an embedding preserves the geometry and

does not introduce any new intersections in the new space. In practice, we approximate M
with a finite number N of iso-geodesic curves as illustrated in Figure 5.1 (b). On each curve,

we take M uniformly spaced points vi
j defined by their Euclidean coordinates (xi

j , y
i
j , z

i
j),

i = 1, 2, . . . , N , and j = 1, 2, . . . ,M . Each curve is now a point in R3M+1 represented by

the column vector Vi, i = 1, 2, . . . , N (Figure 5.1 (c)), such that,

Vi =

[[
Vi

1

]T
. . .

[
Vi

M

]T
]T

withVi
j =

[
xi

j , y
i
j , z

i
j

]T
. (5.1)
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(a) (b)

(c) (d)

Figure 5.1: Geometric modeling of a mono-cardinality subsurface M: (a) The GGF on
M is strictly monotonous and takes its values in the interval [a, b]. As a result, the two
bounding iso-geodesic curves are C(a) and C(b). (b) Discretized version of M. (c) Path
created by M in high dimensional space. (d) Final modeling curve in 3D space.
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(a) (b) (c) (d)

Figure 5.2: Object representation using a squigraph. (a) Original shape. (b) Extracted Reeb
graph. (c) Partitioning into primitives. (d) Squigraph for a topo-geometric representation.

The sample set of iso-geodesic curves on M is a matrix V of dimension 3M × N where

V = [V1 · · ·VN ]. Applying the Whitney theorem on V reduces the embedding problem to

a simple linear formulation;

W = PTV, (5.2)

where W is a set of N points in R3 resulting from the projection of V via P into R3. In

other words, as illustrated in Figure 5.1 (d), the manifold M is reduced to a space curve γ

whose sample points are represented by the columns of the matrix W. In Figure 5.2, we

illustrate the idea of a topo-geometric modeling via the space modeling curves that we just

defined; hence, we intrinsically enhance the typical 3D Reeb graph of Figure 5.2 (b). To

that end, we assign one modeling curve to each edge of the Reeb graph. By so doing, we

may view the final representation as a new kind of graph, that we refer to as a squigraph,

as shown in Figure 5.2 (d). The Whitney embedding theorem guarantees that almost any

projection of M is an embedding. In [39, 40], the notion of good Whitney embedding is

introduced to identify a class of projections. For many applications, such as recognition,

a unique representation of an object is required. As a result, we apply the notion of

optimal embedding with the performance criterion presented in [40] and defined in (5.4)

being maximized.
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5.4 Optimal projection

An embedding gives us a one-to-one mapping between the path in high dimensional

space M⊂ R3M , and the path γ ⊂ R3, so that no two points in M will collapse as a result

of the mapping in (5.2). An implementation of this principle is presented in [40] and referred

to as a secant based method. As just explained, no two points in R3M are mapped to the

Figure 5.3: Asymptotic convergence of LTMADS applied to 3D shape dataset.

same point in R3. This means that the projecting vector is linearly independent from any

possible secant1 in R3M . We define the set of all possible unit secant vectors from the initial
1Secant or secant line is a line that intersects two points from a curve.
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data V as follows:

Ψ =
{

Vi −Vj

‖Vi −Vj‖
, (i, j) ∈ {1, . . . , N}2 and i '= j

}

= {Ψi, i = 1, . . . , L} , (5.3)

with L = N !
(N−2)!2! .

The performance of the projection operator P is then reflected by:

ε = min
i=1,...,L

[
‖ PTΨi ‖2

]
. (5.4)

The closer ε is to 1, the better spread out the projected points in R3 are, and the better

the choice of P is; hence, finding a good estimate of the optimal projection is reduced to

the following minimization problem:

P̂ = arg min
[
− min

i=1,...,L
‖ PΨi ‖2

]

= arg minF (P). (5.5)

Since the function F (P) is non differentiable, we need a direct search algorithm that does

not require any derivative of the function to minimize it. As presented in [41], the Lower

Triangular Mesh Adapted Direct Search algorithm (LTMADS) has been adapted to Rie-

mannian manifolds and tested on an example of a Whitney embedding. The solution given

by LTMADS is highly dependent on the initial data. On our 3D objects, the performance

of LTMADS converges asymptotically to 1 (Figure 5.3). We define a stopping criterion for

the LTMADS algorithm adapted to each data by considering the slope ∆ε = |εi − εi−1|,
where εi and εi−1 respectively represent the performances of the optimization algorithm at

iterations i and i− 1.

5.5 Space marking

It is important to ensure that all iso-geodesic curves’ discrete representations are

uniform and consistent within a coordinate space. Visually, we may equate this task to

marking the surface M. By marking, we mean drawing a well defined reference line on the

surface M. In Figure 5.1 (a), this reference line is the one curve going through the two red

points corresponding to levels a and b. This special line enables us to construct the vectors
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Vi in an accurate and consistent manner. To that end, we use the orthogonal curve defined

in Eq. (4.3).

We note that we only need a starting point to extract an orthogonal curve. This

point, however, is not unique as it is only required to be a point from a bounding iso-

geodesic curve (C(a) or C(b) in Figure 5.1). In fact, thanks to the construction proposed

in Eq. (5.1), choosing a different starting point will only result in a mere rotation of the

reference axes in R3M . Besides, because in the present geometric modeling we require a full

invariance to Euclidean transforms, this rotation will have no effect on the final modeling

curve (γ in Figure 5.1 (d)).
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Chapter 6

Correspondence Preserving

Similarity Invariant for Space

Curves

We present a new similarity invariant signature for space curves. This signature

is based on the information contained in the turning angles of both the tangent and the

binormal vectors at each point on the curve. For an accurate comparison of these signatures,

we define a Riemannian metric on the space of the invariant. We show through relevant

examples that, unlike classical invariants, the one we define in this paper enjoys multiple

important properties at the same time, namely, a high discrimination level, independence

of any reference point, uniqueness, as well as a good preservation of the correspondence

between curves; moreover, we show how to use the proposed signatures for both full and

partial matchings of 3D objects.

6.1 Introduction

Multiple 3D modeling methods use spatial curves for recognition and matching of

objects. Spatial curves are exploited in different configurations. They may, for instance, be

extracted as contours of landmark surfaces [7], as level curves of a Morse function [8], or

also as elements of curved skeletons [9, 10]. All these techniques, despite their differences,

agree in relying on curves’ properties in solving computer vision problems. This common
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approach is motivated by the fact that curves in 3D are fairly well known geometric entities;

moreover, under some conditions, they can accurately describe the overall geometry of an

object in 3D space [7]. Translating the constraints of 3D shape representation techniques to

curves reduces the level of difficulty associated with the representation problem and makes

it more tractable.

Pose invariance of surfaces is a common requirement in object modeling. It is also a good

illustration of the simplification from surfaces to curves. Indeed, an effective and economical

solution for curves pose invariance may be provided through Euclidean/similarity invariants

or invariant signatures [42]. Besides this pose invariance property, additional constraints are

imposed on 3D curves as a direct result of the nature of 3D shape recognition applications.

These constraints may be summarized as follows: invariance to a group of transforms,

uniqueness, local characterization (local support), ability to determine shape properties

such as symmetries and part correspondences. To the best of our knowledge, none of the

available references seem to gather all these properties at once. The most complete work

is the one of Mokhtarian and Bober [7], as they succeed in citing and addressing all the

necessary properties; however, to provide an invariance to scaling transforms, the authors

use a multi-resolutional procedure. In the present work, we provide the advantage of having

an invariant that is, by definition, i.e., without additional steps, fully invariant to all sim-

ilarity transforms. The key contribution of our work resides in using turning angles based

on curvature and torsion instead of using curvature and torsion directly. We further ensure

a natural registration of all the invariants on one curved space which leads to defining an

accurate and computationally easy metric for curves comparison. Indeed, we show that

while torsion and curvature are clearly variant with scaling, turning angles are not. The

first inspiration of our work comes directly from [43], where an invariant for planar curves

is defined. This invariant has the particularity to be an information theoretical measure

of local geometric properties of curves. Moreover, this invariant comes as a proof for long-

time psychological assumptions on mental shape perception. The operation of comparing

invariants, although often overlooked, is crucial in assessing the properties of the invariant,

and accurately achieving recognition operations. This is why, in the present work, we com-

plete the proposed invariant signature by defining its Riemannian space equipped with an

intrinsic measure.

The present Chapter is organized as follows: In Section 6.2, we explain the mo-



46

tivation behind this work. In Section 6.3, we review important geometric and information

theoretical notions used throughout this paper. We briefly cover the work of Feldman and

Singh [43] in Section 6.4, as it was the precursor and the inspiration for this effort. In

Section 6.5, we introduce our new similarity invariant signatures for space curves and define

a Riemannian metric for their accurate comparison in Section 6.6. We prove and illustrate

the property of correspondence preservation in Section 6.7. Finally, in Section 6.8 we show

direct applications of the proposed signatures in 3D object matching and comparison.

6.2 Motivation and related work

We say that two space curves have the same shape if there exists a rigid trans-

formation (rotation, translation) or a uniform scaling or a combination thereof that will

cause one of these curves to completely overlap the other. In addition, we talk about curves

that are partial matches. This practically translates into shapes subjected to occlusions,

or problems of reconstruction from multiple parts. In what follows we provide a list of

properties that models of space curves are to verify;

1. Invariance: In this work, we view a shape as a geometrical entity that is independent of

the coordinate space. It is therefore necessary to have a representation that eliminates

the effects of rigid motions and uniform scalings. In other words, we request our

modeling to be invariant to the group of similarity transforms.

2. Uniqueness: Curves with the same representation are considered to be curves with

the same shape. If curves’ models are different, then these curves are geometrically

different. This requirement implies using a complete system of invariant functions

whose combination will define the final model.

3. Local support: This property is related to the partial matching problem. In this work

our objective is to respect the correspondences between parts of curves. This is why

we highlight the importance of having a locally supported representation.

4. Independence of parametrization and of the starting point: This property will show

to be important in defining the appropriate metric to compare the final models for

space curves.
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Figure 6.1: Frenet Frame.

5. Determination of shape properties: It is sometimes of interest to be able to determine

some shape properties such as symmetries or periodicities.

As we progress in this paper, we will relate our results to the motivations listed above. We

start this work by identifying appropriate geometric features to use in defining our model for

space curves. We propose to rely on the curvature and the torsion functions of a space curve

since these two uniquely specify a space curve up to a rotation and a translation; however,

they are not invariant to scaling which leads us to using the corresponding turning angles,

instead.

6.3 Background and formulation

6.3.1 Turning angles

A space curve is uniquely determined, up to a Euclidean transform, by its curvature

function κ(t), and torsion function τ(t), both continuous functions of the parameter t;
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hence, we naturally use these measurements to define an adequate invariant signature curve;

however, since we target the group of similarity transforms, and knowing that curvature and

torsion are not scale invariant, we use turning angles as the geometric features describing

space curves [43]. In what follows, we show how it is possible to relate curvature and torsion

as linear functions of turning angles. Using the Frenet-Serret formulae (Figure 6.1),

dT
dt

= κN, (6.1)

dN
dt

= −κT + τB, (6.2)

dB
dt

= −τN, (6.3)

where T, N and B are the tangent, the normal and the binormal vectors, respectively, we

define two turning angles αT and αB. αT is the change in the direction of T, and αB is

the change in the direction of B such that: αT (t) ≈ κ(t) · dt and αB(t) ≈ τ(t) · dt. By

choosing to use curvatures as main descriptors, we systematically verify properties 1) and

2) in the list of motivations, as well as the independence of parametrization. We also start

touching upon properties 3) and 4).

6.3.2 Shannon surprisal

We extract the information contained in the proposed turning angles, i.e., our

chosen geometric measures, by using a notion in information theory known as “Shannon

surprisal” [44, 43]. We assume that α(t) follows a von Mises distribution with a zero mean

and a spread parameter b equal to 1. We then define the probability density function of

α(t) as follows:

fα (α(t)) = A exp (cos(α(t))) , ∀ t, (6.4)

with α ∈ [−π,+π] and A = 1
2π·Bessel(0,b) . Bessel(0, b) being the Bessel distribution of mean

0 and variance b. The surprisal of α(t) is by definition:

θ(t) = u (α(t))

= − ln (fα (α(t)))

= − ln(A)− cos(α(t)), ∀ t. (6.5)
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(a) (b)

Figure 6.2: (a) The probability density function of a von Mises distribution. (b) The
corresponding surprisal, which is also the defined manifold N .

6.4 Invariant signature for planar curves

6.4.1 Definition

In [43], Feldman and Singh present an invariant signature for planar curves. This

invariant is based on the turning angle α(t), the change in the direction of the tangent vector

at the instant t. The actually considered invariant signature is the information gained when

measuring α(t) at all instants t. This exactly corresponds to θ(t), the surprisal of α(t)

as defined in (6.5). For a simple planar curve of length L sampled at N equal intervals

of arc length ∆t, α(t) is related to the curvature κ(t) at a given point by the following

approximation,

α(t) ≈ κ(t) ·∆t. (6.6)

We note that scaling the curve implies scaling both κ(t) and L while keeping the value of

κ(t) L
N invariant. It thus follows that α(t) is a measure equivalent to κ(t) except that it is

scale-invariant. The actually considered invariant signature is the information gained when

measuring α(t) at all instants t, which is the surprisal function θ(t) as defined in (6.5).

6.4.2 Illustration

In Figure 6.3 (a), we illustrate an example of a planar curve (solid blue) and its

transformed version (dotted red). The applied transformation is a combination of a trans-
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(a) (b)

Figure 6.3: Two similar planar curves are illustrated in (a). In (b), the same turning angle
αT is obtained for the two planar curves in (a).

lation, rotation, and scaling, i.e., a similarity transform. The resulting invariant signatures

θ(t) for these two curves are exactly the same. We show the corresponding turning angle

function in (Figure 6.3 (b)).

6.5 Invariant signature for space curves

6.5.1 Definition

The following section contains the major contributions of this paper. We start

with a generalization of the invariant signature we presented in Section 6.4 from 2D to 3D.

In our case, we deal with space curves instead of planar curves. For this reason, we require

two turning angles, αT and αB, versus one in the planar case; hence, we naturally use these

two measurements to define an adequate invariant signature curve. αT is the change in the

direction of T. Informally, we view it as a measure of how much a curve is curved and

diverges from a line. αB is the change in the direction of B. Similarly, we view it as a

measure of how much a curve is twisted and diverges from a plane.

αT (t) ≈ κ(t) ·∆t and αB(t) ≈ τ(t) ·∆t. (6.7)

Similarly to α(t), αT (t) and αB(t) follow von Mises distributions of mean zero and with a

spread parameter b equal to 1. Thus, exactly as in (6.5), these two measures introduce the
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Figure 6.4: From the surprisal of two marginals to the surprisal of one binary distribution.

following independent invariant signatures for space curves:

θT (t) = − log(A)− cos(αT (t)) (6.8)

and

θB(t) = − log(A)− cos(αB(t)). (6.9)

Instead of separately considering the marginals of the two random variables αT (t) and
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Figure 6.5: Manifold defined by the invariant signature curve as defined in Eq.(6.11).

αB(t), we define a third invariant term that considers the random vector [αT (t), αB(t)]T .

Thus, the distribution fα of interest becomes the binary von Mises distribution of the

independent variables αT (t) and αB(t), such that:

fα(αT (t), αB(t)) = A2 exp(cos(αT (t)) + cos(αB(t))). (6.10)

The corresponding surprisal function θ(αT (t), αB(t)) ≡ θ(t) becomes,

θ(t) = − ln (fα(αT , αB))

= −2 ln(A)− cos(αT (t))− cos(αB(t)), (6.11)

with (αT (t), αB(t)) ∈ ([−π, π])2.
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Figure 6.6: Two different sets of synthetic space curves. In (a), T1 and T2 are two similarity
transforms. In (b), C1, C2 and C3 are three similar curves except at one inflection point.

6.5.2 Illustration on synthetic space curves

We test the invariant signature defined in (6.11) on some synthetic space curves.

In Figure 6.6, we show the initial curve C1 defined by,

C1 : t ∈ [0, π]→ (cos(2t), cos(3t), cos(5t)). (6.12)

We define two similarity transforms through the matrices T1 and T2; therefore, all the

curves, except C2, are similar to C1. Indeed, we find two sets of invariants as shown in

Figure 6.7. Those corresponding to the family of C1 are represented in red in (a) and

(c) (left column). (b) and (d) correspond to C2 (right column).

This example illustrates the invariance of the turning angles to similarity trans-

forms. It is actually a property that is always verified thanks to the intrinsic nature of
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(a) (b)

(c) (d)

Figure 6.7: Invariants for the space curves of Figure 6.6. (a) and (b) correspond to turning
angles of the binormal vectors. (c) and (d) correspond to turning angles of the tangent
vectors. In red are the signature curves for C1’s family. In green are the ones for C2.
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Figure 6.8: Two different sets of synthetic space curves. In (a), T1 and T2 are two similarity
transforms. In (b), C1, C2 and C3 are three similar curves except at one inflection point.

curvatures (κ and τ).

6.5.3 Signed angles and their implementation

We test a tricky case where local versus global representations are confronted. We

use the new curves C1, C2 and C3 illustrated in Figure 6.8, and defined as follows:

C1 : t ∈ [−π, π]→ (t, t2, t4); (6.13)

C2 : t ∈ [−π, π]→ (t, sign(t)× t2, t4); (6.14)

C3 : t ∈ [−π, π]→ (t, sign(t)× t2, sign(t)× t4); (6.15)
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with

sign(t) =





1 iff t " 0;

−1 otherwise.

Using the turning angles as defined in Section 6.3, we find the turning angles represented

in Figure 6.9.

Since we have the analytical expression of the curves C1, C2 and C3, we may

compute their curvature functions κ1(t), κ2(t), and κ3(t), respectively, as well as their

torsion functions τ1(t), τ2(t), and τ3(t), respectively. We, thus, find

κ1(t) =
‖(16t3, 12t2, 2)‖
‖(1, 2t, 4t3)‖3 ; (6.16)

τ1(t) =
48t

‖(16t3,−12t2, 2)‖2 ; (6.17)

and

κ1(t) = κ2(t) = κ3(t); ; (6.18)

τ1(t) = −sign(t)× τ2(t) = sign(t)× τ3(t). (6.19)

We notice that these curves differ in their torsion functions. Nevertheless, the turning

angles signatures of these curves fail to describe their difference. This phenomenon of local

similarity versus global dissimilarity shows the necessity of taking into account the whole

shape representation. This is equivalent to talking about a memoryless description versus a

description with memory. Therefore, we modify the initial definition of the turning angles

αT and αB. The idea is to include the sign negative or positive for our turning angles. To

that end, we come up with a sign convention for our angles in space. So a Frenet frame

at a time t is now considered with respect to the Frenet frame at time (t − δt), or in our

discretized case at (t−1). Going through the computations and simplifications of Appendix

B, we present the following definition of the signed turning angles:

αT (t) = sign(T(t) ·N(t− 1)) arccos(T(t) ·T(t− 1)); (6.20)

αB(t) = sign(B(t) ·T(t− 1)) arccos(B(t) ·B(t− 1)). (6.21)

We present in Figure 6.10 the turning angles computed using (6.20) and (6.21). In Fig-

ure 6.10 (a), we confirm the results of (6.18) and observe a perfect correspondence between

the turning angles corresponding to κ1, κ2, and κ3. We recall that the difference between
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(a)

(b)

Figure 6.9: Non signed turning angles for the space curves of Figure 6.8.
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(a)

(b)

Figure 6.10: Turning angles for the space curves of Figure 4 (b).

the three curves is in the sign of their αT functions at different semi-open intervals. Using

the formulation in (6.21), we are able to see, experimentally, in Figure 6.10 (b), overlaps
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Figure 6.11: Invariant signature curves for 3D modeling curves γ1, γ2 and γ3; the same
curves appearing in Figure 6.5.

and symmetries between positive and negative parts of the turning angles. This observa-

tion perfectly complies with the result derived in (6.21). This change in the sign of torsion

functions translates the effect of inflection points on the curves C1, C2, and C3. Actually,

what we represented in Figure 6.10, are the marginals of the binary distribution presented

in (6.10). The actual signature curves are the surprisal of this distribution. Their accurate

representation should be on the curved space defined in (6.11). We show, in Figure 6.11,

the signature curves, for C1, C2, and C3, sitting on this space. In Figure 6.10 (a) and

(b), we observe overlaps and symmetries between some parts of the turning angles. This
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observation exactly translates what is happening at the curves level because of the effect of

the inflection points. The actual signature curves sitting on a subset of the space defined

in (6.11).

6.6 Comparison of invariants

The choice of the metric to use on any model is very important in assessing the

accuracy of this one. Indeed, an ineffective metric may lead to a failing model despite the

effectiveness of the model itself. For this very reason, we propose to walk through the ideas

that led to the final metric that we use in combination with the proposed representation

for space curves.

To compare two given curves γi and γj , we compare their invariants. In this

section, we explain the reason behind the transition from (6.8) to (6.11). Why is it that we

used the binary distribution instead of the marginals even though the two variables αT and

αB are assumed to be independent ?

Let us assume that we used the marginals fα(αT ) and fα(αB). In such case, we

approach the two turning angles αT and αB similarly but separately. As a consequence,

we go back to using their corresponding surprisal functions θT (t) and θB(t), respectively,

instead of θ(t). We clearly see that what applies to θT applies to θB; hence, we proceed by

defining a metric for θT and expand it to θB.

If the curve γi is represented by N sampling points, its model becomes a vector

Θi
T of length N . Each element of this vector Θi

T (k), k = 1, · · · , N , is a realization of θT that

takes its values from u([−π, π]); a smooth planar curve N (or a 1-dimensional manifold) as

shown in Figure 6.14, and defined as: u : [−π, π]→ N ⊂ R2.

To compare γi and γj , γj needs to be sampled with exactly the same number of

points N . That is γj would be assigned a similar vector Θj
T . Comparing γi and γj in a

strictly planar case1 becomes equivalent to comparing the two vectors Θi
T and Θj

T .

The simplest metric to use would be a mere Euclidean distance between the two

vectors Θi
T and Θj

T ; however, it is easy to show that such a distance would be inaccurate

in the proposed configuration. Indeed, if we look at the example of Figure 6.12, we find
1In 3D, in addition to the information for curvature, one needs to account for the equivalent information

for torsion, i.e., some vectors Θi
B and Θj

B . We only consider the planar case here in order to simplify our
explanations.
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Figure 6.12: Euclidean versus Riemannian metric. We notice that for two turning angles α1

and α2 that are the same, but in opposite directions, a Euclidean metric cannot distinguish
between their corresponding surprisals.

that for two turning angles α1 and α2 such that α1 = −α2, a Euclidean distance clearly

fails to distinguish between these two curves as it would give a null distance. It is therefore

necessary to apply a Riemannian metric L(., .) on the manifold N . We may think of using

a normalized geodesic distance between two realizations θi and θj . Specifically:

L : N ×N → R;

L(θi, θj) =
1
2π

·
∫ t1

t0

√

1 +
(

du(t)
dt

)2

dt, (6.22)

with u(t0) = θi and u(t1) = θj .

While this metric is more accurate, we still have to ensure that the two curves

γi and γj are sampled with exactly the same number of points. Enforcing this condition

may cause correspondence problems as shown in Figure 6.14. One may think to deal with

this problem by using multiple paths/comparisons without considering or trying to assign

a perfect one-to-one matching between sampling points.

Assuming that we define the metric that does the work for the comparison of Θi
T and Θj

T ,

we would use the same metric to compare Θi
B and Θj

B. A new question would still arise;

How do we combine the two metrics L(Θi
T ,Θi

T ) and L(Θi
B,Θi

B). What would justify a

uniformly weighted average, for instance.
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Figure 6.13: Euclidean versus Riemannian metric. We notice that for two turning angles α1

and α2 that are the same, but in opposite directions, a Euclidean metric cannot distinguish
between their corresponding surprisals.

In order to avoid any arbitrary considerations, and mainly to solve all correspon-

dence problems, we choose to use the binary surprisal function θ(t) instead of the marginals

θT (t) and θB(t). For an accurate comparison of the signature curves, we define a Rieman-

nian metric on the space T of the invariant. The invariant we defined in Eq. (6.11) is a

signature curve embedded in the curved space T created by the two variables αT and αB

(Figure 6.5). All the invariant signature curves that we are to compare are thus constrained

to live on the defined invariant space that we call T . Defining a space T that holds all the

possible invariants is a natural way to register them, and therefore deal with problems of

correspondence between signature curves. As a consequence, we may directly apply a dis-

tance measure to compare these invariant curves without worrying about ensuring a prior

registration. We thus choose to compare two signature curves λ1 and λ2, corresponding to

two space curves γ1 and γ2, by considering the oriented curve λ
∆

= λ1− λ2. We use tools

from measure theory and choose to refer to their physical intuition in relating them to our
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(a)

(b)

Figure 6.14: Illustration of the correspondence problem

problem [45]. We start by viewing the oriented version of the space T as a vector field
−→
F

on the (2π× 2π) plane defined by the variables αT and αB. We directly relate
−→
F to ∇θ(t),

the gradient vector field of θ(t), and define it as follows:

−→
F : ([−π, π])2 → R2

(αT , αB) 3→ sin(αT )
−→
i + sin(αB)

−→
j .

We also define λ∗
∆

; the projection of λ
∆

on the (2π)2 plane. λ∗
∆

is a 1-current in the

space dual to the space of 1-forms D1([−π, π])2. This means that if we consider
−→
F (t) ≡
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−→
F (αT (t), αB(t)) and for all φ from D1([−π, π])2,

λ∗
∆

(φ) :=
∫

λ∗
∆

φ, (6.23)

=
∫

λ∗
∆

φ(
−→
F (t)) dt. (6.24)

With these notions of measure theory, we naturally use the flat norm F(γ∗
∆

) as the intrinsic

distance between two curves γ1 and γ2 whose invariants are λ1 and λ2, respectively. We

thus may write,

D
(
γ1, γ2

)
= F

(
λ∗1− λ∗2

)
, (6.25)

:= sup{λ∗
∆

(φ) : ‖dφ‖ ! 1 for all ‖φ‖ ! 1}, (6.26)

where λ∗
∆

=
(
λ∗1− λ∗2

)
.

6.7 Correspondence preservation

In what follows we prove and simulate different properties that the proposed in-

variants along with their metric are to verify. We use synthetic space curves and simulate

different scenarios.

The invariance of Euclidean transforms and the invariance of parametrization are naturally

verified from the properties of curvature and torsion. We also showed the invariance to

scaling in Section 6.4. We therefore start by looking at the property of correspondence

preservation. Our objective is to show the advantages of registering all the invariant sig-

nature curves on the space T . Some of these advantages are: the model’s independence

of any starting point, correspondence preservation in occluded curves or ensuring a partial

matching of curves.

Let us consider two space curves γ1 and γ2 represented by two invariant curves

λ1 and λ2, and defined as follows:

γ1 : [a, b]→ R3; (6.27)

γ2 : [c, d]→ R3, (6.28)

such that a ! c ! d ! b and γ1([c, d]) = h(γ2([c, d])), where h(·) is a similarity transform.

In other words, the curve γ2 perfectly matches a portion of γ1 after a registration operation,
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(a) (c) (d)

(b)

(e) (f)

(g) (h)

Figure 6.15: Illustration of the problem of occlusion: (a) Initial curve γ1. (b) Two curves
γ2 and γ3 resulting from occluding γ1. (c), (d) represent the turning angles for γ1. (e), (f)
are the turning angles for γ2, and (g), (h) for γ3.
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Figure 6.16: Comparison of the 3D objects in (a) and (c) using their squigraph represen-
tations in (b) and (d), respectively.

i.e., h−1(·), in R3.

Since the invariant curves are representations that are locally supported, λ
∆

as defined in

Eq. (6.23), becomes the invariant curve representing γ1([a, c]) and γ1([b, d]) that we call

λ1[a,c] and λ1[b,d]. The distance D
(
γ1, γ2

)
is therefore equivalent to F(λ1[a,c]) + F(λ1[b,d]).

This correspondence problem is very important for shapes or curves that are subjected

to occlusion or provided as partial views. Let us for instance consider the curve γ1 in

Figure 6.15 (a). We show the corresponding turning angles αT and αB in Figure 6.15 (c)

and (d). In Figure 6.15 (b) we illustrate the same curve γ1 but this time subjected to an

occlusion, which created two separate curves γ2 (in red) and γ3 (in green). Computing the

turning angles for each one of these two curves requires using two distinct starting points;

hence, we find the two sets of signatures (e) and (f) for γ2, and (g) and (h) for γ3. It is
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Figure 6.17: Invariant for partial matching.

clearly difficult to directly match the signatures of γ1 with those corresponding to γ3; we

face a correspondence problem caused by occluded parts of a curve.

The problem becomes less challenging when using the invariant space T as a way to register

the signatures. Indeed, Figure 6.16 presents the three invariant signature curves λ1, λ2,

and λ3 respectively representing γ1, γ2 and γ3.

6.8 Partial matching of primitive shapes

In what follows we give an example of an partial matching of 3D objects (Fig-

ure 6.18). Using the modeling technique proposed in [10], we may reduce the geometry of

a primitive 3D object to one curve in R3 that we refer to as a modeling curve; thus the

full vase in Figure 6.18 (a) may be mapped from its sampling (Figure 6.18 (b)) to just one
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curve (Figure 6.18 (c)). We may do the same for the top part of the vase. We plot the two

resulting modeling curves, for the partial and the full vase, in Figure 6.18 (c). We notice

that it is nearly impossible to see any partial matching by simply looking at these curves.

Instead, we extract our proposed invariant signature curves. We find, in Figure 6.17, a nice

partial matching of these signatures.

6.9 Squigraph comparison

We further apply these signature invariant curves to compare 3D shapes through

their squigraph representations. The particularity of these skeletons is that they have spatial

curves replacing their edges. These characteristic curves are new means to compactly carry

the geometric information of 3D shapes. In Figure 5.2 we illustrate a typical example for

which the practical importance of the proposed invariant signature becomes obvious. The

3D shape comparison technique simplifies to comparing the signatures of the edge curves

with the same colors in Figure 4.5. For these skeletons, we define a new global metric based

on Eq. (6.25). We thus consider that C1 and C2 are now two sets of curves in 3D such

that each set contains N curves Ci
1 and Ci

2, i = 1, · · · , N , respectively representing the

geometrical shapes of the 3-dimensional parts Si
1 and Si

2, i = 1, · · · , N , that constitute each

3D object. We define in Eq. (6.29) the new distance between the two sets C1 and C2, which

is also the distance between the corresponding objects S1 and S2. We show in Chapter 7,

the results of using this distance in comparing 3D objects.

D
(
C1, C2

)
=

1
2

N∑

i=1

(
area

(
Si

1

)

area
(
S1

) +
area

(
Si

2

)

area
(
S2

)
)
· D

(
Ci

1, C
i
2

)
. (6.29)

6.10 Conclusion

In this Chapter, we presented a new similarity invariant signature for space curves.

This invariant, since based on the tangent and the binormal turning angles, has the advan-

tage of being local, unique and fully invariant to similarity transforms. The proposed

invariant proves to be very practical to use in 3D shape modeling/comparison problems.
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(a) (b)

(c)

Figure 6.18: Comparison of the 3D objects in (a) and (c) using their squigraph represen-
tations in (b) and (d), respectively.
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Chapter 7

Experimental Results

We experimentally investigate the performance of the proposed shape modeling

technique. Throughout our definition and presentation of squigraphs, we have shown how

rich they are in information. In what follows, we illustrate how to exploit this information

for different levels of discrimination and for different application objectives; furthermore,

we investigate the robustness properties of squigraphs through some pertinent examples.

7.1 Discrimination power

To assess the overall discrimination power of squigraphs, we compare their per-

formance to those of well established approaches. Our comparison involves the following

techniques:

• Probability density function (PDF) descriptors: Using the distributions of surface fea-

tures is a technique that was first clearly defined and analyzed by Funkhouser et al. [50].

In our experiments, we use the GGF as the surface feature, and its distribution as the

shape descriptor. We choose the Jensen-Shannon Divergence (JSD) as the dissimi-

larity measure between the GGF distributions [33, 48, 49, 50].

• Classification by Characteristic Resolution (CCR) [23, 51]: We have shown in [23]

that each class of shapes determines a characteristic resolution1. This parameter is

extracted through a global comparison of the distribution of the GGF for each class of
1Resolution: is the number of vertices used to describe a given shape.
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3D objects. In short, we may define the characteristic resolution as being the lowest

resolution at which all class members will be accurately represented.

• Augmented Multi-resolution Reeb Graph (aMRG) [2]: This technique is the closest

to squigraphs because of its two-level philosophy, and because of the similar Morse

function it primarily uses in defining a Reeb graph. aMRG is a technique that has been

experimentally established to outperform many 3D classification techniques including

the method of spherical harmonics [5].

Figure 7.1: ROC curves comparing different classification techniques.

To be able to compare all these different techniques on the same basis we use Receiver Oper-

ating Characteristic curves (ROC) as illustrated in Figure 7.1. We then use the Area Under

the Curve (AUC) as our measure for classification performance. We use the Princeton [15]

and the Technion datasets [52, 53, 54] for a total of 17 classes and 239 objects. The overall

performance AUC for each technique is summarized in Table 7.1. With a little more than

97% of overall performance, we note that squigraphs outperform other techniques. Doing

better than PDF and CCR is quite expected as these two techniques only provide a global
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Table 7.1: Overall performance summary.
Method PDF CCR aMRG Squigraph
AUC 87.95% 92.53% 93.389% 97.35%

description of a complex shape. It becomes more challenging to clearly distinguish between

two objects whose global shapes are very similar. As presented earlier in Section 5.1, aMRG

and squigraphs are multi-level descriptors which enable them to capture global, as well as

local features. We explain the better performance of squigrpahs over aMRG by the nature

of the features extracted locally. Indeed, while both methods extract coarse topological

graphs from fully intrinsic representations, i.e., a geodesic distance independent of any ref-

erence point, aMRG relies on local features that relate to a Euclidean-based distance. So,

the key advantage of the squigraph representation technique, that played in the results of

Figure 7.1, is to consistently use intrinsic features and geodesic distances.

7.2 Primitive shape analysis

In order to thoroughly understand squigraphs and their modeling abilities, we

propose, in the following set of experiments, to investigate the different properties a 3D

descriptor is required to enjoy. Since the proposed technique proceeds to separately consider

homogeneous parts constituting an object, i.e., mono-cardinality subsurfaces, it is intuitively

easier to start visualizing the different properties of objects with primitive geometries. By

primitive geometry, we mean that the corresponding topological graph is just one edge.

7.2.1 Invariance to pose

As noted earlier, given that the shape of an object remains unaltered when sub-

jected to a similarity transform, we require a geometric descriptor to be strictly and com-

pletely invariant to similarity transforms. To demonstrate the invariance of a GGF to

isometries by way of geometry modeling, we carry out the following experiment. Start-

ing with the shape in Figure 7.2 (a), we apply each of the following transformations to it:

(b) rotation, (c) scaling, (d) shearing, and (e) translation. In Figure 7.3 (a), we present the

resulting five modeling curves that correspond to each shape of Figure 7.2. To better visu-

alize the differences of the curves in R3, we propose to project them on the plane as shown
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(a) (b)

(c) (d)

(e)

Figure 7.2: Invariance to pose. The original object represented in (a) is subjected to:
(b) a rotation transform, (c) a scaling transform, (d) a shearing transform and in (e) to a
translation. (Best visualized in color)

in Figure 7.3 (b). We note that all the modeling curves show, up to a similarity transform,

a similar variation to that of the curve in black corresponding to the initial shape. This

experimental result is consistent with the results of Appendix A.

We say that two shapes are geometrically identical if their modeling curves are

identical up to a similarity transform. For this reason, we use the representation of Chap-

ter 6, where the effects of similarity transforms are eliminated and all traces corresponding

to the modeling curves are registered. Identical geometries will hence see their traces fully

overlap. We present the traces corresponding to this experiment in Figure 7.4. We show

the top view of these traces in Figure 7.5. These traces are, by definition, invariant to all

similarity transforms. We thus expect to see the result of Figure 7.5, where all the traces

overlap except for the one corresponding to the shearing transform; moreover, we find that

the distance D (as defined in Eq. (6.29)) between the original shape and the sheared one

is equal to 4.65 while the distance of other shapes away from the original one is between

0.08 and 0.29. Practically, we do not find a null dissimilarity between geometrically similar
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Figure 7.3: Modeling curves corresponding to the objects of Figure 7.2. (a) Modeling
curves in space. (b) Projection of the modeling curves in (a) on the horizontal plane.

shapes because of slight differences due to approximations by sampling and the resulting

Whitney embeddings.
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Figure 7.4: Invariant traces for curves in Figure 7.3.

7.2.2 Progressive deformation

In order to analyze the progression of the distance D, as a result of progressively

deforming a primitive shape, we use the first ellipsoid starting from left in Figure 7.6 (a).

This ellipsoid is defined by the following equation:

(x− x0)2

(rx)2
+

(y − y0)2

(ry)2
+

(z − z0)2

(s× rz)2
= 1, (7.1)

with (x0, y0, z0) = (0, 0, 0), (rx, ry, rz) = (1
2 , 1

2 , 1
2), and s = 1

4 .

Each time, we apply a vertical shearing transform defined by the matrix T (s) =





1 0 0

0 1 0

0 0 s



,

s being the shearing factor. We vary s from 1
4 to 3. We denote the resulting ellipsoid for

a given s by E(s). We note that E(1) is the 2-dimensional sphere centered at the origin (0,
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Figure 7.5: Invariant traces for curves in Figure 7.3.

0, 0) with a radius equal to 1
2 . Before proceeding with the analysis of the present experi-

ment, we have to answer a very important question that arises when considering singular

shapes such as spheres. We first recall that we only talk about a Morse function when we

ensure that all critical points are non-degenerate; thus, the GGF on a spherical shape is

not a Morse function. Our proposed solution is to slightly disturb such a singular shape.

For a spherical shape for instance, we may disconnect a polar point from other points. As

illustrated in Figure 7.7, the distribution of the GGF on a spherical surface quickly changes

from a simple dirac function to the distribution shown in Figure 7.7 (d).

We apply this same perturbation technique to all the shapes in Figure 7.6 (a), and extract

a modeling curve for each set of iso-geodesic curves in Figure 7.6 (b). Figure 7.8 illustrates
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(a)

(b)

Figure 7.6: Comparison of the geometry of five deformed spheres. (a) shows the 5 consid-
ered shapes, and (b) shows the correspondingh spatial modeling curves.

the resulting modeling curves. Our first observation is that these curves are planar, i.e., in

R2, while the proposed Whitney modeling technique is in R3. This is due to the simplicity

of the evolution of the iso-geodesic curves. Very briefly, we state that more variations imply

more dimensions.

Focussing on this important aspect of predicting and understanding the modeling curves

constitutes a future research direction. Indeed, the present experiment and its results lead

to further investigations toward defining the applicability and limitations of the strong

Whitney embedding versus the easy Whitney embedding theorem2.

Our choice of a simple progressive vertical shearing transform is motivated by two points:

first, applying a simple directional geometric deformation, and second, being able to quan-

titatively describe this deformation. In the present example we use the shearing factor s for

this quantification; hence, we are able to visualize the variation of D versus s; thus, the red
2Indeed, while the easy Whitney embedding theorem allows embedding an n-dimensional Hausdorff man-

ifold into R2n+1, the strong Whitney embedding allows going lower and defining an embedding in R2n [38].
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(a) (b)

(c) (d)

Figure 7.7: The original sphere represented in (a) is disturbed to create a non-degenerate
GGF function, whose color mapping is shown in (b). The corresponding distributions of
the GGF: (c) Before, and (d) after disturbing the sphere.
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Figure 7.8: Analysis of the effect of shearing transforms on the modeling curves.

full curve in Figure 7.9 shows the smooth evolution of the distance between E(1
4) and other

ellipsoids with 1
4 < s ! 3. Taking a sphere as the reference, i.e., E(1), we may see the effect

of the vertical deformation in the two directions s < 1 and s > 1. The resulting distance

curve is illustrated in Figure 7.9 with a dotted blue line. We note that the distance D follows

an exponential behavior as it starts slowing down for large values of ∆s. One may explain

this tendency by referring back to the human perception. In fact, looking at Figure 7.6 (a),

we may classify these ellipsoids into two categories: category 1, corresponding to s < 1; and

category 2, corresponding to s > 1, the sphere (s = 1) representing the transition point. We

then may say that when an ellipsoid is deformed to be away from its category, the distance

D is relatively high, but once it reaches a new category, additional deformations in the same

direction will only add slight distances. We find, for instance, that D(E(2), E(3)) = 0.045

while D(E(0.5), E(1.5)) = 0.22, that is about 5 times the first distance and for the same ∆s.

The present result constitutes an important step in understanding the geometry of shapes,

and translating the human perception of geometry.
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Figure 7.9: Analysis of the effect of shearing transforms on the modeling curves.

7.2.3 Mono-cardinality subsurfaces

In this experiment we continue our observation and analysis of mono-cardinality

subsurfaces, but this time we consider more complex shapes found in real-world objects.

We thus compare selected parts that constitute the edges of the squigraphs extracted for

the datasets used in Section 7.1.

We summarize our comparison results with the confusion matrix in Figure 7.10. We note

that when legs are bent, the modeling curves are still able to detect a difference between

stretched and bent legs. This phenomenon is equivalent to the example of Subsection 6.5.3

where we illustrated how the modeling curves, and squigraphs in general, are able to detect

an inflection point. Depending on the application, one might think of bent and stretched

legs (or arms) as being the same. In this case, we note that, while modeling curves are still

able to be lenient on the effect of one inflection point, we recommend for simplicity and

efficiency to directly use the distribution of the GGF along each part.
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Figure 7.10: Matching and comparison of the geometry of mono-cardinality subsurfaces.
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Figure 7.11: Comparison and matching of 6 different bipedal subjects.

7.2.4 Shape matching

The synthesis of the distances between different mono-cardinality subsurfaces pro-

vides a global distance for complex shapes as given by Eq. 6.29. We present a couple of

relevant examples of confusion matrices for different classes and subclasses of 3D shapes. In

Figure 7.11, we note the power of the squigraph technique in differentiating between objects

that are topologically similar, but who belong to distinct object classes. In Figure 7.12,

we present the result of comparing the same object/subject, but in different poses. We

note again the ability of squigraphs in finding differences due to both rigid and non-rigid

transformations. The best way to understand these results is to go back to the analysis of

changes that occur on primitive shapes. In this case, it means observing what happens to

each part of a human body separately.
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Figure 7.12: Comparison and matching of the 14 different poses for the same subject
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Figure 7.13: Robustness to noise by short secants filtering.

7.3 Robustness evaluation

For the practical applicability of the modeling space curves and the final squigraphs,

it is important to evaluate their robustness to both noise and object discrete decimation.

7.3.1 Robustness to noise

As for any practical problem, the measurements, when scanning 3D models, con-

tain additive noise. The secant-based method (described earlier), being directly dependent

on the data, raises natural concern about the level of accuracy of the modeling curves in

presence of noisy measurements. For testing purposes, we add Gaussian noise with an am-
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Figure 7.14: Secants filtering with different thresholds

plitude ranging between 0 to 1% of the shape bounding radius for each considered object.

Figures 7.13 (a) and (b) illustrate the object “Vase” with and without additive noise. In Fig-

ure 7.13 (e), we observe the impact of noise on the modeling curve. The dissimilarity score

between the initial shape “Vase” and its noisy version is of 3.08. This basically indicates

that the two modeling curves are very different and may induce an erroneous recognition

result. Broomhead and Kirby [40] propose a solution to alleviate the effect of noise on

embeddings. They show that the shortest secants induce the most severe distortion. We

propose, as a result, to filter the shortest secants prior to applying the LTMADS algorithm.

We test the effect of filtering out the short secants where the threshold is a fraction of the

longest secant. Figure 7.14 illustrates the result of 250 Monte Carlo simulations. It is clear

that the errors due to noise are reduced after filtering, with a more dramatic impact for

larger thresholds.
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Figure 7.15: Robustness to decimation.

7.3.2 Robustness to decimation

The resolution of a 3D object measurement/scanning may vary with applications,

and it is hence important to evaluate our proposed geometric modeling in presence of

such variations. To that end, we consider an objet “Frog” to assess the robustness of the

modeling to decimation. Taking the highest resolution, of 10000 vertices, as a reference, we

measure the dissimilarity induced by a progressive decrease in resolution for object “Frog”.

We illustrate this experiment in Figure 7.15. As explained in [23], using the GGF, we

may assign a particular resolution, to each shape, referred to as a characteristic resolution.

By definition, the characteristic resolution corresponds to the lowest number of vertices

able to accurately represent a considered shape. For the shape “Frog”, we find that the

characteristic resolution is about 5000 points. Analyzing the results of Figure 7.15, we may

conclude that for “Frog”, our modeling is accurate for resolutions greater or equal to the
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characteristic resolution of 5000 points. Thus, our geometric modeling is consistent and

nearly invariant to decimation.

7.4 Conclusion

In this Chapter, we presented a novel and effective geometric modeling technique

which significantly reduces a 3D shape representation to a squigraph. The first positive re-

sults are encouraging to warrant further study and more expanded applications. The overall

objective of our work is to develop a comprehensive and efficient classification algorithm

which can further translate the human understanding of the geometry of shapes from a

local to a global viewpoint.
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Chapter 8

Adaptive Embedding and its

Application to Network Failure

Detection

We define a new adaptive embedding approach for data dimensionality reduction

applications. Our technique entails a local learning of the manifold of the initial data,

with the objective of defining local distance metrics that take into account the different

correlations between the data points. We choose to illustrate the properties of our work on

the isomap algorithm. We show through multiple simulations that the new adaptive version

of isomap is more robust to noise than the original non-adaptive version; moreover, we use

our proposed technique to detect intrusions in sensor networks.

8.1 Introduction

In recent years, data sizes have drastically increased. As a result, there has been

a great research focus on improving and defining effective dimension reduction techniques.

These efforts are extremely relevant if not crucial to data storage, visualization, and analysis

application. The growing demand of storage and archiving resources, together with their

inefficient current exploitation, and their increasing cost, have also made this line of research

very relevant. The objective behind learning and reducing the dimension of data is to

eliminate any redundant information while still preserving the intrinsic and underlying
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structure. One may think of this problem as an attempt to find all the variables that

may be combined into fewer variables without destroying the interactions between the data

points. To formulate this, we proceed as follows.

8.1.1 Problem statement

Given a data point sample of N points Xi, i = 1, · · · , N , from a d-dimensional

smooth manifold M, where M⊂ Rn and d < n, in a dimension reduction problem, we aim

at finding a homeomorphism f
(
·
)
, or the image of {Xi} by a homeomorphism f

(
·
)

such

that:

f : M⊂ Rn → Rd (8.1)

Xi 3→ f
(
Xi

)
= Yi, for i = 1, · · · , N.

The goal is to effectively determine the data {Yi} of reduced dimension d that reflects

all the information present in the initial data {Xi}. Explicitly finding the function f(·)
is however, not required in dimension reduction applications, as the approach is in spirit

non-parametric and data driven. We may distinguish two classes of dimension reduction

approaches; The first class includes all the classical methods, or linear methods, such as

Principal Component Analysis (PCA) [55], and Multidimensional Scaling (MDS) [56]. In

contrast, the second class corresponds to non-linear techniques [58], also referred to as man-

ifold learning methods. The linear algorithms are well known and fully understood. They

are often used to preprocess data before proceeding to further analysis. The fundamental

idea of PCA, a widely used linear algorithm, is to only keep predominant dimensions of

the data. Geometrically speaking, this corresponds to linearly projecting the data on the

vectors of highest variances; however, this only works if the data has a linear, or close to

linear, structure. Any nonlinearity in the data can only be accounted for by more general

methods extending beyond linear structure. The second class of manifold-based algorithms

tends to find the same predominant feature axes using more relaxed assumptions. The

common assumption of these more powerful techniques, is that all the data samples live on

a Riemannian manifold embedded in a high dimensional Euclidean space. These techniques

have proven so far, to be the most successful approaches [57]. When the source of data

has a relatively few degrees of freedom, it becomes possible to reduce the dimensionality of

this data while keeping its inherent structure. In fact, a lot of real world applications fall
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within this class of underlying lower dimensional systems which may easily be formulated

in a manifold learning setting. Such applications include face recognition [68], face pose de-

tection [65], gait analysis [66], and human motion data interpolation [67]. There are about

four widely known manifold learning techniques; Locally Linear Embedding (LLE) [59],

Laplacian eigenmap [60, 61], Hessian eigenmap [62], and isomap [63]. Manifold learning

algorithms always assume the observed cloud of data points as part of a smooth manifold.

To proceed with the analysis of this data, we start by constructing a graph connecting all

the data points and preserving the structure of the manifold. One usually defines an ε−ball

neighborhood of fixed radius around each data-point to carry out the analysis. All these

techniques have shown very successful results in ideal conditions; nevertheless, there is very

limited work in addressing the effect of noise and the choice of the neighborhood size. Very

simple experiments may show how crucial it is to take these considerations into account.

Our goal in this work is to address the noise problem, and propose a way to develop

a new manifold-learning technique, with a built in robustness to noise. The key idea is to

replace the arbitrary choice of an approximate Euclidean distance, and to instead use a

locally adaptive distance. To achieve that, we propose to account for sample data points’

correlations in defining their neighborhood. We follow the approach of Carlsson et. al in

addressing the problem of an “adequate” neighborhood size [72]. So, to go beyond the one

neighborhood size which achieves some particular embedding, and to gain further insight,

we argue that, geometrically and topologically, there is more interest to discover by evolving

a neighborhood size. We demonstrate in addition the flexibility of this approach in a sensor

network intrusion detection application.

The remainder of the paper is organized as follows: Section 8.1.2 is an overview of the

different existing approaches to robust manifold embedding techniques, with more emphasis

on the isomap algorithm. In Section 8.2, we discuss the classical isomap algorithm which, in

contrast to our proposed technique, is non-adaptive. In Section 8.3, we describe in detail our

proposed adaptive method. We evaluate the benefit of an adaptive/non-adaptive isomap

in Section 8.4, using a residual covariance as a performance measure. We illustrate our

proposed technique by analyzing synthetic data in Section 8.5, and demonstrate its wider

applicability by solving a sensor network failure detection.
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8.1.2 Related work

Many of the existing manifold learning techniques show successful results on some

well chosen data; and they all share a limiting failure when in presence of more challenging

datasets. The difficulties are often due to the intrinsic topological and geometric structure

of the manifold with quick variations in their curvature and non-convex boundaries [69].

Additional difficulties result from the properties of the real data such as the sampling dis-

tribution and the nature and level of the prevailing noise.

To address existing limitations and to further improve the embedding results, and extend

the applicability of the current manifold learning techniques, we propose to account for

these overlooked characteristics. The idea is to progressively adapt to the data at hand

in tracing the local connectivity between the point samples. Some recent efforts have ex-

plored adaptive manifold learning, by specifically focusing on two parameters: the intrinsic

dimensionality of the data, and the size of the neighborhood. Wang et al. propose in [69] a

method to adaptively select the neighborhood size. They base their technique on determin-

ing the alignment space of local tangents. Cost et al. on the other hand define an intrinsic

dimensionality using K-nearest neighbors graphs [70]. In [71], Levina et al. adopt a local

estimate for the intrinsic dimension at each point.

Our present work also focusses on an adaptive embedding of the manifold; we, in contrast,

point out an additional characteristic that appears to be as critical as the choice of the

embedding dimension or the neighborhood size. We indeed show in what follows, that the

choice of a Euclidean distance is suboptimal in determining the local connectivity between

data points, and therefore, introduce a new adaptive distance locally defined for each point.

8.2 Non-linear manifold searching techniques

As noted earlier, our proposed effort builds on existing manifold embedding tech-

niques; therefore, we start by recalling the preliminary steps of a non-linear manifold learn-

ing technique.

8.2.1 Isometric feature mapping (Isomap)

Among the multiple manifold learning algorithms, we choose to use the isomap

algorithm to illustrate our ideas. This choice is due to the isomap success in numerous
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(a) (b) (c)

Figure 8.1: Different phases of isomap.

embedding problems and its well established properties [63]. The principle and motivations

of this work are, nevertheless, extendable to other mapping (embedding) algorithms.

Isomap is a nonlinear mapping algorithm which starts with the assumption that the high

dimensional data lie on a Riemannian manifold [64]. To achieve the dimension reduction,

isomap defines a mapping that aims to preserve the geodesic distances on the initial mani-

fold. We may describe isomap as merely an improved version of Multidimensional Scaling

(MDS) embedding where the interpoint distance is a geodesic, i.e., restricted to lie on the

initial manifold of the data.

Concretely, for a data point sample of N points Xi, i = 1, · · · , N , from a d-dimensional man-

ifold M, where M⊂ Rn and d < n, we detail the different steps of the isomap embedding

algorithm in Table 8.1.

8.2.2 Local connectivity graph

The very key idea of isomap is to consider geodesic distances along the manifold

of data. To practically approximate the intrinsic geodesic distance on a manifold, we need

to locally connect each point to its k nearest neighbors, or equivalently to the neighbors

within the ε-neighborhood. By so doing, we result in a graph that approximates the real

manifold. In Figure 8.1 we illustrate the different phases of isomap; from a continuous

manifold Figure 8.1 (a) to its approximating graph Figure 8.2 (a), and finally the embedding

Figure 8.2 (b). We show in Figure 8.2 (b) how severely a connectivity graph may be affected
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Table 8.1: Non-adaptive isomap algorithm.

Step 1: Construct a weighted graph G;

Let G = {A,X}, where: • A is an (N ×N) adjacency matrix;
• X = [X1, · · · , XN ]T ;

Compute DE , the matrix of Euclidean distances between each two points in {Xi}N
i=1.

Choose ε, the neighborhood radius.
for i, j ∈ {1, · · · , N} do

if DE(i, j) < ε do
A(i, j) = DE(i, j);

else
A(i, j) =∞;

end if
end for

Step 2: Compute geodesic distances on G.

Let DG be the matrix of geodesic distances between each two points in {Xi}N
i=1.

do DG = A; (initialization)
for i, j ∈ {1, · · · , N}; k = 1; do

while DG(i, j) '= DG(i, k) + DG(k, j) do
for k ∈ {1, · · · , N} do

DG(i, j) = min(DG(i, j),DG(i, k) + DG(k, j));
end for

end while
end for

Step 3: Apply MDS on DG.

in the presence of noise. This consequently yields an inaccurate embedding of a given

manifold as shown in Figure 8.2 (d).

8.3 New adaptive distance

The graphs illustrated in Figure 8.2 (b) and (d) are the result of considering a

Euclidean neighborhood. We herein maintain that the choice of the distance is crucial

in constructing good connectivity graphs. Our objective is to define a more appropriate

distance that alleviates the effect of noise and obtain accurate graphical approximations.

In what follows we provide the intuitive rationale for the choice of a new adaptive distance.
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(a) (b)

(c) (d)

Figure 8.2: Failure of isomap in a noisy setting.

We subsequently present a mathematical formulation of new solutions to the embedding

problem to result in an improved technique described in Table 8.1.
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Figure 8.3: Mahalanobis vs Euclidean distance: On the left, the result of using a Euclidean
distance. On the right, the result of using a Mahalanobis distance.

8.3.1 Motivation

In spite of the isomap good embedding results, it remains very unstable and sensi-

tive to noise, as well as to the choice of the parameter ε and the distance function used prior

to applying MDS. Changing the distance from Euclidean to geodesic thus appears to be in-

sufficient to completely preserve the intrinsic geometric structure of the initial manifold M.

In what follows, we propose to account for the statistical properties of the observed data.

Specifically, our technique consists in considering the correlation between each point and

the rest of the observed data points, and subsequently exploit this information to connect

it to its neighbors. This idea is exactly equivalent to using a Mahalanobis distance [73]. To

better understand the intuition behind our choice, we illustrate the result of constructing

a graph connectivity for the sample points in Figure 8.3. We note that when using a Eu-

clidean distance to determine the neighbors of each data point causes a miss of some details

in the structure of the data set.

8.3.2 Adaptive embedding algorithm

In what follows we propose a new distance matrix DM to replace DE in the

algorithm described in Table 8.1. Our objective is to define, each time, a distance that is

fully dependent on the sample point {Xi}N
i=1; hence, we rescale the data coordinates based
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Table 8.2: Description of the learning step ( new adaptive distance)

Step 0: Compute DM , the new distance on M.

Choose ε1, the neighborhood radius for manifold learning;
and ε2, the neighborhood radius for the construction of G.

for i ∈ {1, · · · , N} do
Yi = XT

i ; (initialization)
for j = 1, cdots,N do

while DE(i, j) < ε1 do
Yi = [Yi;XT

j ];
end while

end for∑
i = cov(YT

i ), cov(·) being the covariance matrix;
end for

for i ∈ {1, · · · , N} do
for j ∈ {1, · · · , N} do

DM (i, j) = (Xj −Xi)
∑−1

i (Xj −Xi)T ;
end for

end for
do ε = ε2; DE = DM ;
go to Step 1. (See Table 8.1)

on their distributions on M as well as their correlations. Since this technique relies on

a learning procedure and directly uses isomap to build on, we refer to it as an adaptive

isomap algorithm. We hence use the algorithm of Table 8.1 with a learning step, i.e, Step

0, as described in Table 8.2.

8.4 Performance comparison

In this section, we qualitatively and quantitatively compare the performances of

the two versions (adaptive and non-adaptive) of isomap embeddings. To that end, we start

by defining a performance measure. We subsequently simulate different classical examples

of manifolds to embed in a lower dimensional space. The choice of our examples is such

that one may visually inspect and verify the properties as well as the intuition behind each

technique.
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8.4.1 Residual variance

We choose a residual variance ρ to be our performance indicator. In further ap-

plications, we may use it to investigate the topological structure of a manifold. Residual

variance ρ is defined in Eq. (8.2).

ρ = 1−
(
corrcoef(DX ,DZ)

)2
, (8.2)

where:

• DX : is the distance matrix for the initial data in M. For an isomap embedding

technique, this matrix is the geodesic distance matrix DG which is exploited by MDS.

We note that DG may vary as it depends on the first distance matrix used to identify

a neighborhood. For the classical non-adaptive isomap, this distance was simply

Euclidean, i.e., DE , while for the adaptive case we define it as DM . This difference is

crucial to comparing the performance improvement of the adaptive isomap algorithm

over its classical counterpart.

• DZ : is the distance matrix for the final (embedded) data of reduced dimension p

(p < n). We take advantage of the simplicity of the geometries of our examples (swiss

rolls, hemispheres, parallel sheets), and take p equal to 2 and consider DZ to be

Euclidean. It becomes trivial to visually verify the accuracy of our assumption. For

more complex geometrical and topological structures, one would, however, need to

compute geodesic distances on the new manifold embedded in Rp.

• corrcoeff(·, ·): is the linear correlation coefficient. If we note {dX} and {dZ} as two

ordered sets of distances (matrix elements) of DX and DZ , respectively, then:

corrcoef(DX ,DZ) =
σXZ

σXσZ
, (8.3)

σXZ being the correlation between the two sets {dX} and {dZ}, and σX and σZ being

the standard deviations of {dX} and {dZ}, respectively.

8.4.2 Simulation examples

We saw that in the presence of noise, the performance of non-adaptive isomap

drastically deteriorates and it only makes sense to evaluate performance change when we
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Figure 8.4: Adaptive embedding of the noisy swiss roll in Figure 8.1.

analyze the same noisy data sets using the adaptive isomap. We consider the noisy swiss

roll example for which we determine an embedding as shown in Figure 8.4. We next treat

a slightly more challenging case constituted of two adjacent hemisphere and two parallel

sheets. Figure 8.5 shows the results obtained for the hemispheres. We note that the result of

the non-adaptive isomap is not an embedding. This is due to the connectivity resulting from

using a Euclidean neighborhood. Indeed, the two hemispheres end up connected through

at least 2 points. We avoid this connection by using a Mahalanobis distance. Figure 8.5 (c)

shows the final embedding resulting from using the proposed adaptive isomap.

In Figure 8.6, we show the embedding results for parallel sheets shown in Figure 8.6 (a).

(a) (b) (c)

Figure 8.5: Embedding two adjacent hemispheres: (a) Hemispheres, (b) the result of a
non-adaptive isomap embedding, (c) the result of the proposed adaptive isomap.

For k = 10, we see in Figure 8.6 that non-adaptive isomap fails again to define an embedding

of the two sheets. The reason is again the connection that occurs when using a Euclidean
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distance for a graph construction. The result of the adaptive isomap is the disconnection of

the two sheets. As they should, they remain two distinct structures and are hence separately

embedded. The result of embedding one sheet is shown in Figure 8.6 (b). Note that it is

exactly the sheet itself, but now in 2-dimensions instead of 3-dimensions. For a different

value of the neighborhood size k > 10, we find the results in (d) and (e) for the adaptive

and adaptive isomaps, respectively. We notice the sensitivity of the mapping results to the

neighborhood size; we also see that the separation between the two sheets did not happen

in both cases; however, in the adaptive case, the two sheets are clearly spread on a plane,

while we lose one sheet in the non-adptive case, as all the points collapse into one line.

(a)
(b) (c)

(d) (e)

Figure 8.6: Embedding of two parallel sheets: (a) the initial data. (b) Adaptive isomap
with k = 10 and k1 = 55. Only 50% of the initial points are represented here. (c) Non-
adaptive isomap with k = 10. 100% of the initial points are represented and the two sheets
are overlapped. Adaptive isomap (d) and non-adaptive isomap (e) with k = 15. 100% of
the initial points are represented.

To further evaluate the effect of noise on our proposed embedding technique, we

increase the amount of Gaussian noise to vary between 0% and 8% of the orthogonal distance

between the two parallel sheets, the normal distance between two consecutive levels of the

swiss roll, and the orthogonal distance between the poles of the two adjacent hemispheres.

By way of Monte Carlo simulations on the data in hand, we obtain the results shown

in Figure 8.7 (a) and (b). We establish that the adaptive isomap technique consistently
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outperforms the non-adaptive isomap technique.

(a) (b)

Figure 8.7: Monte Carlo simulations.

8.5 Network failure detection

A natural source of data which share similar characteristics with much of the data

explored above is that of sensors in a given network topology. We propose to fully exploit

the adaptive isomap algorithm for a statistical analysis of networks in the presence of at-

tacks or intrusions with the ultimate objective of detecting them and potentially localizing

them. Using the correlation between the different nodes of a network is a way to unfold the

interdependencies between them.

Our approach starts by abstracting networks from their physical layered description; we

view a network as a set of features/measurments. The same feature space may house mul-

tiple networks that are not necessarily the same. Our hypothesis is that each network is a

smooth topologically homogeneous manifold embedded in the network feature space. We

consider each data point on a manifold as a node in a network. In addition, an attack or

any intrusion is assumed to have the effect of destroying the initial topological structure of

a manifold. Our intrusion detection task is thus equivalent to detecting and determining

any topological changes on the nodes manifold.

Before considering the dimensionality reduction of a network data, it is important to adap-
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(a) (b)

Figure 8.8: Sets connectivity versus neighborhood size. By progressively varying the size
of the neighborhood, we identify and count the parts that get merged. We talk about the
persistence of these parts (Figure 8.9).

Figure 8.9: Detection of different events. (a) Two events detected when using a Euclidean
distance. (b) Three events detected when using a Mahalanobis distance.

tively define the connectivity between the different nodes of a network. In the present

experiment, the connectivity is dependent on the correlation between the measurements

collected at each node. Using a mahalanobis distance becomes, thus, crucial as it is inde-

pendent of any scaling we may apply to a specific set of measures. We illustrate this idea in

Figure 8.8, where we observe all the connectivity events associated with the three provided

sets. By evolving the size of the neighborhood, we connect the different data points and

find the number of the final resulting structures (connected sets). We determine, by using a

Euclidean distance that there are two detected events, while we discover three events when

using a Mahalanobis distance (Figure 8.9).
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Figure 8.10: Distinction between attacked nodes in red and normal ones in blue.

Given the correlated and noisy nature of network data, we adopt the adaptive

isomap algorithm. We use the DARPA network data available online from the Knowledge

Discovery and Data (KDD) Mining Cup 1999 website. We use all 41 parameters to define

each node, i.e., N = 41. We initially only use data that is subjected to a single attack. We

find the embedding result of the adaptive isomap in Figure 8.10.

The first comment is that there is a clear separation between the safe and attacked

nodes; nevertheless, we need to verify that this visualization makes sense and that we are in

presence of an accurate embedding. To that end, we look at the embedding dimensionality

to verify that it is indeed equal to three. We find in Figure 8.11 (a) the residual variance

corresponding to this experiment. We may read that “3” is the the accurate embedding

dimensionality when the network is subjected to one attack; however, in the presence of

multiple attacks, the embedding dimensionality increases and becomes difficult to visualize.

8.6 Conclusion

We proposed a new adaptive embedding algorithm that first learns from the cor-

relations between the neighboring points. We showed that combining an adaptive distance

with an existing embedding algorithm leads to better embedding results with a higher ro-

bustness to noise. We illustrated this technique on the isomap algorithm, while conceptually
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(a) (b)

Figure 8.11: Embedding dimensionality of networks under different attacks. (a) Under
multiple attacks. (b) Under a single attack.

compatible with any manifold learning technique that relies on a connectivity graph for the

initial data. Our initial experiments on network data show promising results that we plan

to further investigate.
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Chapter 9

Future research directions

In this thesis, we have presented different techniques to compactly represent manifold-

like datasets, with an emphasis on 3-dimensional objects. All our research work was primar-

ily motivated by applications in object classification, recognition and identification. Many

fundamental questions arose in the course of this work, such as specifying the sampling rate

of a height function defined on a complex 3D shape, remain open research questions and

constitute a very rich avenue for future research.

Another very promising and new theme of research directly impacts networking applica-

tions, as quickly illustrated in Chapter 8, and attempts to exploit novel structures of data

which may approximately lie on nonlinear curved spaces or manifolds. For concreteness and

conciseness, we concentrate on and elaborate on these two directions of research, the first

one with more of a fundamental interest than the second.

9.1 Fundamentals of shape modeling

In order to achieve an efficient modeling of 2 and 3D shapes, a good understanding

of their geometry is required. To that end, we proceed to detail the crucial elements for an

accurate shape representation. Specifically,

1. Optimal reduction of triangulated meshes.

2. Efficient sampling of 2-dimensional surfaces via level curves.

3. Surface reconstruction.
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9.1.1 Optimal reduction of triangulated meshes

In practice, a surface S is arbitrarily closely approximated by a triangular mesh

consisting of a certain number of nodes (points). As discussed in Chapter 3, each surface

S is characterized by a parameter ", referred to as the characteristic resolution of S. This

parameter effectively defines the minimal number of points required to ”correctly” represent

a shape S.

The role that " plays in reducing the computational cost of representing a shape with

minimal quality loss is pivotal. While this approach has demonstrated a representation effi-

ciency improvement of up to an order of magnitude, the illustration remains statistical and

empirical and hence theoretically unsubstantiated, hence raising the fundamental question

of its source and overall viability.

The reduction of " of a shape as shown, was equivalent to smoothing the shape,

hence affecting it. Analogously, a resolution of a flat norm corresponds to a certain scale

of curvature, which in turn is directly related to the characteristic resolution " and thus to

the flat norm in R3. A more robust and systematic modeling of 3D shapes (for instance),

would likey incude the multi-scale nature of the flat norm.

9.1.2 Efficient sampling

We have seen in Eq. (4.1) how a surface is represented by a set of disjoint closed

curves. Sampling a surface is then reduced to keeping a subset of these curves. The obvious,

and crucial question is what to keep and what to leave? To the best of our knowledge, such

a sampling rate K is only empirically chosen [1, 28]. Finding the effective sampling rate

K that ensures the extraction of, and only of, the information needed to represent and

reconstruct a given shape, would thus be revolutionary in the automatization of level set

based algorithms.

We may start approaching the problem by first considering surfaces (or subsur-

faces) of cardinality one1. Let us revert to the probability space (V,A, P#) as defined in

Section 4.2.3. For a uniformly sampled space, it is easy to note that the instantaneous value

P#(i) is proportional to the length of the level curve at the value i of the GGF. We thus

propose to measure the variability ∆P = |P#(i) − P#(j)| induced by the monotonous and
1Cardinality of a surface is the number of closed level curves for a given value of the considered Morse

function on that surface.
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continuous evolution of the level curves. In fact, it is this variability that will guide an

efficient sampling of a surface. ∆P is nothing but the change in the length of Ci and Cj

up to a constant. In summary, the idea is to determine ∆P as the minimal variation to be

detected. Then, we need to sample P# at every ∆P variation.

Many questions may follow from the proposed preliminary direction in investigat-

ing an efficient sampling rule for surfaces. One may consider achieving an adaptive sampling

where the criterion ∆P changes as needed. An even more challenging problem is to consider

complex surfaces where the cardinality is no longer equal to one.

9.1.3 Surface reconstruction

Once we determine how detailed the representation of a 3D object needs to be, it

becomes possible to ensure a good surface reconstruction. Thus, the inverse problem to the

one of Section 9.1.2 may be posed, i.e., we are given few level curves and we want to get

the initial shape back.

Considering the observed closed sampling curves as points in a hyperspace, we may

write them in the form of a matrix X, where each column corresponds to one curve. At this

level, the problem is reduced to interpolating this space curve. In order to further simplify

the problem, we propose to use linear algebra and compute the SVD2 decomposition of X.

X = U
(
ΣV†

)
= UP. (9.1)

Our problem is thus reduced to finding the interpolated version of P, say Q. The interpo-

lated version of X, say Y, will follow as:

Y = UZQ, (9.2)

where Z is a diagonal filtering matrix. This simple technique is proposed for surfaces of

cardinality one. Again, there is a need to generalize this approach to generic shapes. It may

also be of interest to combine recognition and reconstruction in order to efficiently restore

occluded objects.
2SVD: Singular Value Decomposition
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9.2 Behavioral Modeling

We have shown throughout this thesis, how to exploit the same topological-geometric

techniques in modeling various data sets (e.g., 3D objects, sensor network data). Modeling

the human behavior is one more possible setting, that may benefit from our proposed set

of tools. The ultimate goal of this research is to implement an automatic system capable of

understanding complex dynamic scenes. One may start by studying elementary activities

(i.e., behaviors) such as walking, running, and jumping. For such a modeling problem, it is

of interest to exploit both spatial and temporal information captured in video frames. We

thus may view each frame as a visual/spatial description of the studied action at an instant

t. The description in question is the precise placement of the subject with respect to his/her

environment, which may first be limited to the floor. We propose to extract this description

(a) (b)

Figure 9.1: Modeling of the action of walking.

through the contour of the subject and its relative location. We, then, may recreate the

dynamic scene by interpolating the surface of all the contours parameterized by time. By so

doing, we construct the one dimensional manifold M of the scene. Our modeling consists

therefore in embedding M in R3 thanks to an implementation of the Whitney embedding
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theorem (Section 5.3).

We investigate the discriminative capabilities of the proposed method by looking

at three scenes; two of which illustrate the action of jumping (Figure 9.2) and the third

one being the action of walking (Figure 9.1). The preliminary results comfort the idea of

(a) (b)

(c) (d)

Figure 9.2: Modeling of the action of jumping for different sequences.
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a signature assigned to each elementary behavior. There are nevertheless many questions

that one may needs to answer in order to fully investigate the effectiveness of the proposed

technique. Below is a non exhaustive list of these important questions:

1. How accurate is it to only consider the exterior contours?

2. How much does the change in topology affect the final model?

3. How many frames are needed to represent each movement?

4. How to deal with complicated configurations where severe occlusion and noise are

involved?

5. How to combine many actions in one scene?
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APPENDIX A

If a 3D shape is subjected to a similarity transform, then each point Vi
j in R3

defined by the coordinates
(
xi

j , y
i
j , z

i
j

)
is transformed as follows

V′i
j = αQVi

j + K, (.3)

where α is a scaling factor, Q is a (3 × 3) unitary matrix , i.e., QQT = I3, and K is a

(3× 1) translation vector. Considering the construction in (??) and the transform in (.3),

each point Vi in R3M is transformed by:

V′
i = αQ ·Vi + K, (.4)

with

Q =





Q

Q
. . .

Q




, and K =





K

K
...

K




.

The question of concern is to find the transform applied to a modeling curve when the 3D

shape it originates from is subjected to a similarity transform. If P is defined by (??), we

may define P′ as follows

P̂′ = arg min
[
− min

i=1,...,L
‖ PTΨ′

i ‖2
]

.

Since the new secants Ψ′
i, i = 1, · · · , L, result from the same equation (.4) as V′

i, we

conclude that P′ is directly related to P through a permutation (or a rotation) matrix. In

other words: P′ = QPU, where UUT = I3; thus, we may write:

W′ = P′T ·V′,

=
(
QPU

)T ·
(
αQV + K

)
,

= α (PU)T ·QT ·QV +
(
QPU

)T ·K,

= αUT ·PTV + L,

= αUT ·W + L. (.5)

From (.5), we conclude that if a shape in 3D is subjected to a similarity transform (transla-

tion, rotation, scaling, or a combination thereof), then its modeling curve in 3D is subjected

to the same group of transforms.
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APPENDIX B

Let T(t), N(t) and B(t) be the tangent, normal and binormal vectors, respectively,

of the Frenet frame at the time index t. Applying Graham-Schmidt normalization to this

frame, we define the orthonormal basis (e1, e2, e3) such that:

‖e2‖ = e2 · e2 = 1; (.6)

e2 · e1 = 0; (.7)

e3 = e1 × e2. (.8)

Our task is to define the two turning angles αT (t) and αB(t). We recall that αT (t) is the

signed angle formed by the two tangent vectors T(t) and T(t + 1), and αB(t) is the signed

angle formed by the two binormal vectors B(t) and B(t + 1). We start by assuming that

T(t) and T(t+1) construct a plane, i.e., we assume that αT (t) is not null. We furthermore

restrict αT (t) to be in ]0, π
2 ]. It follows that 1 > sin(αT (t)) > 0 and 1 > cos(αT (t)) > 0. We

may write:

e1 = T(t);

e2 =
1
b

(
T(t + 1)− aT(t)

)
, with a, b '= 0,

(.9)

where a = cos(αT (t)), and b = sin(αT (t)). The frame at (t+1) needs to verify the following

conditions:

e1 = T(t);

e3 = sign(N(t) · e′3);

e′3 =
T(t)×T(t + 1)
‖T(t)×T(t + 1)‖ . (.10)

e2 = 0 · e1 + cos(αT ) · e3 + sin(α) · e2; (.11)

or e2 =
1

sin(α)
·
(
N(t)− cos(α)e3

)
. (.12)

Solving these equations leads to the following result:

Θ = sign
(
T(i + 1) ·N(t)− cos(α)T(t + 1) · e3

)
. (.13)
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Since sign(T(t+1) · e2) = sign(T(t+1) ·N(t)− cos(α)T2 · e3) = sign(T(t+1) ·N(t)), then:

Θ = sign(T(t + 1) ·N(t)) · arccos(T(t) ·T(t + 1)). (.14)


